50 research outputs found

    Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study

    Get PDF
    Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Measuring the population burden of injuries-implications for global and national estimates: A multicentre prospective UK longitudinal study

    Get PDF
    Current methods of measuring the population burden of injuries rely on many assumptions and limited data available to the global burden of diseases (GBD) studies. The aim of this study was to compare the population burden of injuries using different approaches from the UK Burden of Injury (UKBOI) and GBD studies.The UKBOI was a prospective cohort of 1,517 injured individuals that collected patient-reported outcomes. Extrapolated outcome data were combined with multiple sources of morbidity and mortality data to derive population metrics of the burden of injury in the UK. Participants were injured patients recruited from hospitals in four UK cities and towns: Swansea, Nottingham, Bristol, and Guildford, between September 2005 and April 2007. Patient-reported changes in quality of life using the EQ-5D at baseline, 1, 4, and 12 months after injury provided disability weights used to calculate the years lived with disability (YLDs) component of disability adjusted life years (DALYs). DALYs were calculated for the UK and extrapolated to global estimates using both UKBOI and GBD disability weights. Estimated numbers (and rates per 100,000) for UK population extrapolations were 750,999 (1,240) for hospital admissions, 7,982,947 (13,339) for emergency department (ED) attendances, and 22,185 (36.8) for injury-related deaths in 2005. Nonadmitted ED-treated injuries accounted for 67% of YLDs. Estimates for UK DALYs amounted to 1,771,486 (82% due to YLDs), compared with 669,822 (52% due to YLDs) using the GBD approach. Extrapolating patient-derived disability weights to GBD estimates would increase injury-related DALYs 2.6-fold.The use of disability weights derived from patient experiences combined with additional morbidity data on ED-treated patients and inpatients suggests that the absolute burden of injury is higher than previously estimated. These findings have substantial implications for improving measurement of the national and global burden of injury

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    A pressure taxonomy and pressure network diagrams for Puget Sound ecosystem recovery

    No full text
    Puget Sound ecosystems, species, and human wellbeing are affected by both natural events and human activities. Broadly, these activities and events that ultimately effect change in the ecosystem via a variety of pathways of effect can be called “pressures” or “threats. In its conceptual models of the Puget Sound ecosystem and of ecosystem recovery efforts, the Puget Sound Partnership (PSP) identifies key components of the ecosystem and the pressures that directly threaten these components. We have developed a pressure taxonomy that is intended to support recovery efforts by improving the ability of practitioners, managers, scientists and decision-makers to communicate, coordinate and collaborate more effectively within and across projects. The taxonomy is hierarchical, including three levels of information – pressure categories, pressure classes, and stressors – and examples of how the elements can be combined to describe pathways of effect. By adopting a standard nomenclature and presenting examples of pressure network diagrams, the PSP pressure taxonomy serves as a starting point for describing the multiple pathways of effect of pressures to Puget Sound ecosystems. The taxonomy has guided the development and implementation of the 2014 Puget Sound Pressure Assessment and will help make the results of that assessment useful to others. Ultimately, if all Puget Sound ecosystem recovery partners are able to reference the common taxonomy, we will increase the region’s capacity to assess risks to Puget Sound ecosystems and develop more effective approaches to managing and reducing threats to the Sound
    corecore