63 research outputs found

    Disease-Independent Skin Recruitment and Activation of Plasmacytoid Predendritic Cells Following Imiquimod Treatment

    Get PDF
    Background: Imiquimod, an immune response modifier that is used topically to treat different types of skin cancer, induces the production of proinflammatory cytokines that stimulate an antitumor immune response. We assessed characteristics of the imiquimod-induced immune activation in epithelial and lymphoproliferative neoplasias of human skin. We focused on plasmacytoid predendritic cells (PDCs), the primary producer of interferon α (IFN-α) after imiquimod activation in vitro. Methods: We used Affymetrix oligonucleotide arrays to compare gene expression profiles from tumors from 16 patients, 10 with superficial basal cell carcinomas (sBCCs), five with cutaneous T-cell lymphomas (CTCLs), and one with Bowen's disease, before and after topical imiquimod treatment. We used quantitative immunohistochemistry with PDC-specific antibodies against BDCA-2 and CD123 to characterize the PDC population before and after imiquimod treatment in these specimens. Activation status of PDCs from four sBCC patients was assessed by intracellular IFN-α staining and flow cytometry. Results: Expression of various IFN-α-inducible genes (e.g., CIG5, G1P2, OASL, IFIT1, STAT1, IFI35, OAS1, ISG20, MxA, and IRF7), the so-called IFN-α signature, was increased similarly in both sBCC and CTCL lesions after imiquimod treatment. PDCs were recruited and activated in both lesion types, and they produced IFN-α after imiquimod treatment in vivo (mean percentage of PDCs producing IFN-α = 14.5%, 95% confidence interval [CI] = 4.9% to 24%; range = 3.3%-27%, n = 4 lesions). Imiquimod induced similar immune activation patterns in all three diseases, and these patterns were associated with the number of PDCs recruited to the treatment site. Two imiquimod-treated sBCC patients who did not mount an inflammatory response to imiquimod and whose lesions lacked the IFN-α signature after treatment had fewer PDCs in treated lesions compared with other treated patients with such a response. Conclusions: Imiquimod induces immune activation patterns that relate to the number of the PDCs recruited to the treatment site, thus supporting the role of PDC in responsiveness to imiquimod in human

    Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-α

    Get PDF
    Psoriasis is a common T cell–mediated autoimmune disorder where primary onset of skin lesions is followed by chronic relapses. Progress in defining the mechanism for initiation of pathological events has been hampered by the lack of a relevant experimental model in which psoriasis develops spontaneously. We present a new animal model in which skin lesions spontaneously developed when symptomless prepsoriatic human skin was engrafted onto AGR129 mice, deficient in type I and type II interferon receptors and for the recombination activating gene 2. Upon engraftment, resident human T cells in prepsoriatic skin underwent local proliferation. T cell proliferation was crucial for development of a psoriatic phenotype because blocking of T cells led to inhibition of psoriasis development. Tumor necrosis factor-α was a key regulator of local T cell proliferation and subsequent disease development. Our observations highlight the importance of resident T cells in the context of lesional tumor necrosis factor-α production during development of a psoriatic lesion. These findings underline the importance of resident immune cells in psoriasis and will have implications for new therapeutic strategies for psoriasis and other T cell–mediated diseases

    Plasmacytoid predendritic cells initiate psoriasis through interferon-α production

    Get PDF
    Psoriasis is one of the most common T cell–mediated autoimmune diseases in humans. Although a role for the innate immune system in driving the autoimmune T cell cascade has been proposed, its nature remains elusive. We show that plasmacytoid predendritic cells (PDCs), the natural interferon (IFN)-α–producing cells, infiltrate the skin of psoriatic patients and become activated to produce IFN-α early during disease formation. In a xenograft model of human psoriasis, we demonstrate that blocking IFN-α signaling or inhibiting the ability of PDCs to produce IFN-α prevented the T cell–dependent development of psoriasis. Furthermore, IFN-α reconstitution experiments demonstrated that PDC-derived IFN-α is essential to drive the development of psoriasis in vivo. These findings uncover a novel innate immune pathway for triggering a common human autoimmune disease and suggest that PDCs and PDC-derived IFN-α represent potential early targets for the treatment of psoriasis

    Freedom from disease in plaque psoriasis: Comparing the perceived importance of voting round 2 statements from a Delphi consensus of patients, physicians and nurses

    Get PDF
    © 2023 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. This is an open access article under the terms of the Creative Commons Attribution-Non Commercial License. https://creativecommons.org/licenses/by-nc/4.0/Peer reviewe

    Secukinumab use in patients with moderate to severe psoriasis, psoriatic arthritis and ankylosing spondylitis in real-world setting in Europe: Baseline data from SERENA study

    Get PDF
    INTRODUCTION: Secukinumab, a fully human monoclonal antibody that directly inhibits interleukin-17A, has demonstrated robust efficacy in the treatment of moderate to severe psoriasis (PsO), psoriatic arthritis (PsA) and ankylosing spondylitis (AS), with a rapid onset of action, sustained long-term clinical responses and a consistently favourable safety profile across phase 3 trials. Here, we report the clinical data at enrolment from SERENA, designed to investigate the real-world use of secukinumab across all three indications. METHODS: SERENA is an ongoing, longitudinal, observational study conducted at 438 sites across Europe in patients with moderate to severe plaque PsO, active PsA or active AS. Patients should have received at least 16 weeks of secukinumab treatment before enrolment in the study. RESULTS: Overall 2800 patients were included in the safety set; patients with PsA (N = 541) were older than patients with PsO (N = 1799) and patients with AS (N = 460); patients with PsO had a higher mean body weight than patients with PsA and patients with AS; and patients with PsO and patients with AS were predominantly male. Time since diagnosis was longer in patients with PsO compared with patients with PsA and patients with AS, and about 40% of patients were either current or former smokers. The proportion of obese patients (body mass index ≥ 30 kg/m2) was similar across indications. Patients were treated with secukinumab for a mean duration of 1 year prior to enrolment (range 0.89-1.04). The percentages of patients with prior biologics exposure were 31.5% PsO, 59.7% PsA and 55% AS. The percentages of patients prescribed secukinumab monotherapy were 75% (n = 1349) in PsO, 48.2% (n = 261) in PsA and 48.9% (n = 225) in AS groups. CONCLUSION: Baseline demographics of the study population are consistent with existing literature. This large observational study across all secukinumab indications will provide valuable information on the long-term effectiveness and safety of secukinumab in the real-world setting

    Drug Survival of Interleukin (IL)‑17 and IL‑23 Inhibitors for the Treatment of Psoriasis: A Retrospective Multi‑country, Multicentric Cohort Study

    Get PDF
    Background: Drug survival, defined as the length of time from initiation to discontinuation of a given therapy, allows comparisons between drugs, helps to predict patient's likelihood of remaining on a specific treatment, and achieving the best decision for each patient in daily clinical practice. Objective: The aim of this study was to provide data on drug survival of secukinumab, ixekizumab, brodalumab, guselkumab, tildrakizumab, and risankizumab in a large international cohort, and to identify clinical predictors that might have an impact on the drug survival of these drugs. Methods: This was a retrospective, multicentric, multi-country study that provides data of adult patients with moderate to severe psoriasis who started treatment with an interleukin (IL)-17 or IL-23 inhibitor between 1 February 2015 and 31 October 2021. Data were collected from 19 distinct hospital and non-hospital-based dermatology centers from Canada, Czech Republic, Italy, Greece, Portugal, Spain, and Switzerland. Kaplan-Meier estimator and proportional hazard Cox regression models were used for drug survival analysis. Results: A total of 4866 treatment courses (4178 patients)-overall time of exposure of 9500 patient-years-were included in this study, with 3164 corresponding to an IL-17 inhibitor (secukinumab, ixekizumab, brodalumab) and 1702 corresponding to an IL-23 inhibitor (guselkumab, risankizumab, tildrakizumab). IL-23 inhibitors had the highest drug survival rates during the entire study period. After 24 months of treatment, the cumulative probabilities of drug survival were 0.92 (95% confidence interval [CI] 0.89-0.95) for risankizumab, 0.90 (95% CI 0.88-0.92) for guselkumab, 0.80 (95% CI 0.76-0.84) for brodalumab, 0.79 (95% CI 0.76-0.82) for ixekizumab, and 0.75 (95% CI 0.73-0.77) for secukinumab. At 36 months, only guselkumab [0.88 (95% CI 0.85-0.91)], ixekizumab [0.73 (95% CI 0.70-0.76)], and secukinumab [0.67 (95% CI 0.65-0.70)] had more than 40 patients at risk of drug discontinuation. Only two drugs had more than 40 patients at risk of drug discontinuation at 48 months, with ixekizumab demonstrating to have a higher cumulative probability of drug survival [0.71 (95% CI 0.68-0.75)] when compared with secukinumab [0.63 (95% CI 0.60-0.66)]. Secondary failure was the main cause for drug discontinuation. According to the final multivariable model, patients receiving risankizumab, guselkumab, and ixekizumab were significantly less likely to discontinue treatment than those receiving secukinumab. Previous exposure to biologic agents, absent family history of psoriasis, higher baseline body mass index (BMI), and higher baseline Psoriasis Area and Severity Index (PASI) were identified as predictors of drug discontinuation. Conclusion: The cumulative probability of drug survival of both IL-17 and IL-23 inhibitors was higher than 75% at 24 months, with risankizumab and guselkumab demonstrating to have overall cumulative probabilities ≥ 90%. Biological agent chosen, prior exposure to biologic agents, higher baseline BMI and PASI values, and absence of family history of psoriasis were identified as predictors for drug discontinuation. Risankizumab, guselkumab, and ixekizumab were less likely to be discontinued than secukinumab
    corecore