414 research outputs found

    Short distance physics with heavy quark potentials

    Get PDF
    We present lattice studies of heavy quark potentials in the quenched approximation of QCD at finite temperatures. Both, the color singlet and color averaged potentials are calculated. While the potentials are well known at large distances, we give a detailed analysis of their short distance behavior (from 0.015 fm to 1 fm) near the critical temperature. At these distances we expect that the T-dependent potentials go over into the zero temperature potential. Indeed, we find evidences that the temperature influence gets suppressed and the potentials starts to become a unique function of the underlying distance scale. We use this feature to normalize the heavy quark potentials at short distances and extract the free energy of the quark system in a gluonic heat bath.Comment: Lattice2001(hightemp), 3 pages, 2 figure

    An important fingerprint of wildfires on the European aerosol load

    Get PDF
    Abstract. Wildland fires represent the major source of fine aerosols, i.e., atmospheric particles with diameters <1 μm. The largest numbers of these fires occur in Africa, Asia and South America, but a not negligible fraction also occurs in Eastern Europe and former USSR countries, particularly in the Russian Federation, Ukraine and Kazakhstan. Besides the impact of large forest fires, recent studies also highlighted the crucial role played by routine agricultural fires in Eastern Europe and Russia on the Arctic atmosphere. An evaluation of the impact of these fires over Europe is currently not available. The assessment of the relative contribution of fires to the European aerosol burden is hampered by the complex mixing of natural and anthropogenic particle types across the continent. In this study we use long term (2002–2007) satellite-based fires and aerosol data coupled to atmospheric trajectory modelling in the attempt to estimate the wildfires contribution to the European aerosol optical thickness (AOT). Based on this dataset, we provide evidence that fires-related aerosols play a major role in shaping the AOT yearly cycle at the continental scale. In general, the regions most impacted by wildfires emissions and/or transport are Eastern and Central Europe as well as Scandinavia. Conversely, a minor impact is found in Western Europe and in the Western Mediterranean. We estimate that in spring 5 to 35% of the European fine fraction AOT (FFAOT) is attributable to wildland fires. The estimated impact maximizes in April (20–35%) in Eastern and Central Europe as well as in Scandinavia and in the Central Mediterranean. An important contribution of wildfires to the FFAOT is also found in summer over most of the continent, particularly in August over Eastern Europe (28%) and the Mediterranean regions, from Turkey (34%) to the Western Mediterranean (25%). Although preliminary, our results suggest that this fires-related, continent-wide haze plays a not negligible role on the European radiation budget, and possibly, on the European air quality, therefore representing a clear target for mitigation

    Screening in Hot SU(2) Gauge Theory and Propagators in 3d Adjoint Higgs model

    Get PDF
    We investigate the large distance behavior of the electric and magnetic propagators of hot SU(2) gauge theory in different gauges using lattice simulations of the full 4d theory and the effective, dimensionally reduced 3d theory. A comparison of the 3d and 4d data for the propagators suggests that dimensional reduction works surprisingly well down to temperatures T=2 T_c. A detailed study of the volume dependence of magnetic propagators is performed. The electric propagators show exponential decay at large distances in all gauges considered and a possible gauge dependence of the electric screening mass turns out to be statistically insignificant.Comment: Submitted to Proceedings of Lattice 2000 and Workshop "Strong and Electroweak Matter 2000". LaTeX uses espcrc2.st

    Scaling, asymptotic scaling and Symanzik improvement. Deconfinement temperature in SU(2) pure gauge theory

    Full text link
    We report on a high statistics simulation of SU(2) pure gauge field theory at finite temperature, using Symanzik action. We determine the critical coupling for the deconfinement phase transition on lattices up to 8 x 24, using Finite Size Scaling techniques. We find that the pattern of asymptotic scaling violation is essentially the same as the one observed with conventional, not improved action. On the other hand, the use of effective couplings defined in terms of plaquette expectation values shows a precocious scaling, with respect to an analogous analysis of data obtained by the use of Wilson action, which we interpret as an effect of improvement.Comment: 43 pages ( REVTeX 3.0, self-extracting shell archive, 13 PostScript figs.), report IFUP-TH 21/93 (2 TYPOS IN FORMULAS CORRECTED,1 CITATION UPDATED,CITATIONS IN TEXT ADDED

    Remarks on a class of renormalizable interpolating gauges

    Get PDF
    A class of covariant gauges allowing one to interpolate between the Landau, the maximal Abelian, the linear covariant and the Curci-Ferrari gauges is discussed. Multiplicative renormalizability is proven to all orders by means of algebraic renormalization. All one-loop anomalous dimensions of the fields and gauge parameters are explicitly evaluated in the MSbar scheme.Comment: 24 pages. no figure

    An analytic study of the off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge

    Get PDF
    We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with the algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from the condensate , which has attracted much attention in the Landau gauge.Comment: 24 pages, 2 .eps figures. v2: version accepted for publication in Phys.Rev.

    Strong Coupling Constant from Scaling Violations in Fragmentation Functions

    Full text link
    We present a new determination of the strong coupling constant alpha_s through the scaling violations in the fragmentation functions for charged pions, charged kaons, and protons. In our fit we include the latest e+e- annihilation data from CERN LEP1 and SLAC SLC on the Z-boson resonance and older, yet very precise data from SLAC PEP at center-of-mass energy sqrt(s)=29 GeV. A new world average of alpha_s is given.Comment: 10 pages, 3 eps figue

    Dynamical mass generation in quantum field theory : some methods with application to the Gross-Neveu model and Yang-Mills theory

    Full text link
    We introduce some techniques to investigate dynamical mass generation. The Gross-Neveu model (GN) is used as a toy model, because the GN mass gap is exactly known, making it possible to check reliability of the various methods. Very accurate results are obtained. Also application to SU(N) Yang-Mills (YM) is discussed.Comment: 8 LaTeX2e pages, uses Kluwer class file crckbked.cls. Kluwer package included. To appear in: Proceedings of the NATO Advanced Research Workshop on "Confinement, Topology, and other Non-Perturbative Aspects of QCD", Stara Lesna, Slovakia, 21-27 jan 200

    On parton distributions beyond the leading order

    Full text link
    The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorisation scheme to another recalled. It is shown that the conventional MS‾\overline{\rm {MS}} and DIS definitions thereof are ill-defined due to the lack of distinction between the factorisation scheme dependence of parton distribution functions and renormalisation scheme dependence of the strong coupling constant αs\alpha_s. A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading order event generators briefly outlined.Comment: PRA-HEP-93/05, Latex, 10 pages and 2 Postscript figures appended at the end of this fil

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.
    • …
    corecore