648 research outputs found
Extreme gravitational lensing in vicinity of Schwarzschild-de Sitter black holes
We have developed a realistic, fully general relativistic computer code to
simulate optical projection in a strong, spherically symmetric gravitational
field. The standard theoretical analysis of optical projection for an observer
in the vicinity of a Schwarzschild black hole is extended to black hole
spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitter
spacetimes. Influence of the cosmological constant is investigated for static
observers and observers radially free-falling from the static radius.
Simulations include effects of the gravitational lensing, multiple images,
Doppler and gravitational frequency shift, as well as the intensity
amplification. The code generates images of the sky for the static observer and
a movie simulations of the changing sky for the radially free-falling observer.
Techniques of parallel programming are applied to get a high performance and a
fast run of the BHC simulation code
The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats
BACKGROUND: Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined. We tested whether the angiotensin type 1 (AT1) receptor contributes to impaired CBF autoregulation in pregnant rats with placental ischemia caused by surgically reducing uterine perfusion pressure. METHODS: Placental ischemic or sham operated rats were treated with vehicle or losartan from gestational day (GD) 14 to 19 in the drinking water. On GD 19, we assessed CBF autoregulation in anesthetized rats using laser Doppler flowmetry. RESULTS: Placental ischemic rats had impaired CBF autoregulation that was attenuated by treatment with losartan. In addition, we examined whether an agonistic autoantibody to the AT1 receptor (AT1-AA), reported to be present in preeclamptic women, contributes to impaired CBF autoregulation. Purified rat AT1-AA or vehicle was infused into pregnant rats from GD 12 to 19 via mini-osmotic pumps after which CBF autoregulation was assessed. AT1-AA infusion impaired CBF autoregulation but did not affect brain water content. CONCLUSIONS: These results suggest that the impaired CBF autoregulation associated with placental ischemia is due, at least in part, to activation of the AT1 receptor and that the RAS may interact with other placental factors to promote cerebrovascular changes common to preeclampsia
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
Differences in fungal immune recognition by monocytes and macrophages : N-mannan can be a shield or activator of immune recognition
Acknowledgements We thank Professor Gordon Brown for Fc-dectin-1 and Professor David Williams for glucan phosphate. We also thank Kevin MacKenzie, Debbie Wilkinson, Gillian Milne, and Lucy Wright at the University of Aberdeen Core Microscopy & Histology Facility.Peer reviewedPublisher PD
Comparing Poynting flux dominated magnetic tower jets with kinetic-energy dominated jets
Magnetic Towers represent one of two fundamental forms of MHD outflows.
Driven by magnetic pressure gradients, these flows have been less well studied
than magneto-centrifugally launched jets even though magnetic towers may well
be as common. Here we present new results exploring the behavior and evolution
of magnetic tower outflows and demonstrate their connection with pulsed power
experimental studies and purely hydrodynamic jets which might represent the
asymptotic propagation regimes of magneto-centrifugally launched jets.
High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights
into the underlying physics of magnetic towers and help us constrain models of
their propagation. Our simulations have been designed to explore the effects of
thermal energy losses and rotation on both tower flows and their hydro
counterparts. We find these parameters have significant effects on the
stability of magnetic towers, but mild effects on the stability of hydro jets.
Current-driven perturbations in the Poynting Flux Dominated (PDF) towers are
shown to be amplified in both the cooling and rotating cases. Our studies of
the long term evolution of the towers show that the formation of weakly
magnetized central jets within the tower are broken up by these instabilities
becoming a series of collimated clumps which magnetization properties vary over
time. In addition to discussing these results in light of laboratory
experiments, we address their relevance to astrophysical observations of young
star jets and outflow from highly evolved solar type stars.Comment: 11 pages, 4 figures, accepted for publication in the High Energy
Density Physics Journal corresponding to the proceedings of the 9th
International Conference on High Energy Density Laboratory Astrophysics, May
4, 2012, Tallahassee Florid
Seriation and Multidimensional Scaling: A Data Analysis Approach to Scaling Asymmetric Proximity Matrices
A number of model-based scaling methods have been developed that apply to asymmetric proximity matrices. A flexible data analysis approach is pro posed that combines two psychometric proceduresâ seriation and multidimensional scaling (MDS). The method uses seriation to define an empirical order ing of the stimuli, and then uses MDS to scale the two separate triangles of the proximity matrix defined by this ordering. The MDS solution con tains directed distances, which define an "extra" dimension that would not otherwise be portrayed, because the dimension comes from relations between the two triangles rather than within triangles. The method is particularly appropriate for the analysis of proximities containing temporal information. A major difficulty is the computa tional intensity of existing seriation algorithms, which is handled by defining a nonmetric seriation algorithm that requires only one complete itera tion. The procedure is illustrated using a matrix of co-citations between recent presidents of the Psychometric Society.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
The analysis of facial beauty: an emerging area of research in pattern analysis
Much research presented recently supports the idea that the human perception of attractiveness is data-driven and largely irrespective of the perceiver. This suggests using pattern analysis techniques for beauty analysis. Several scientific papers on this subject are appearing in image processing, computer vision and pattern analysis contexts, or use techniques of these areas. In this paper, we will survey the recent studies on automatic analysis of facial beauty, and discuss research lines and practical application
Conformal linear gravity in de Sitter space II
From the group theoretical point of view, it is proved that the theory of
linear conformal gravity should be written in terms of a tensor field of rank-3
and mixed symmetry [Binegar, et al, Phys. Rev. D 27, (1983) 2249]. We obtained
such a field equation in de Sitter space [Takook, et al, J. Math. Phys. 51,
(2010) 032503]. In this paper, a proper solution to this equation is obtained
as a product of a generalized polarization tensor and a massless scalar field
and then the conformally invariant two-point function is calculated. This
two-point function is de Sitter invariant and free of any pathological
large-distance behavior.Comment: 16 pages, no figure, published versio
Graph Layouts by tâSNE
We propose a new graph layout method based on a modification of the t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. Although t-SNE is one of the best techniques for visualizing high-dimensional data as 2D scatterplots, t-SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET, based on representing a graph with a distance matrix, which together with a modified t-SNE cost function results in desirable layouts. We evaluate our method by a formal comparison with state-of-the-art methods, both visually and via established quality metrics on a comprehensive benchmark, containing real-world and synthetic graphs. As evidenced by the quality metrics and visual inspection, tsNET produces excellent layouts
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- âŠ