
Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Graph Layouts by t-SNE

J. F. Kruiger1,2, P. E. Rauber1,3, R. M. Martins4, A. Kerren4, S. Kobourov5, A. C. Telea1

1University of Groningen, the Netherlands
2École Nationale de l’Aviation Civile, France

3University of Campinas, Brazil
4Linnaeus University, Sweden
5University of Arizona, USA

Abstract
We propose a new graph layout method based on a modification of the t-distributed Stochastic Neighbor Embedding (t-SNE)
dimensionality reduction technique. Although t-SNE is one of the best techniques for visualizing high-dimensional data as 2D
scatterplots, t-SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET,
based on representing a graph with a distance matrix, which together with a modified t-SNE cost function results in desirable
layouts. We evaluate our method by a formal comparison with state-of-the-art methods, both visually and via established quality
metrics on a comprehensive benchmark, containing real-world and synthetic graphs. As evidenced by the quality metrics and
visual inspection, tsNET produces excellent layouts.

1. Introduction

Graph drawing (GD) is an important subfield of information visu-
alization. Yet, making a ‘good’ drawing becomes more difficult for
large and densely-connected graphs. Assuming edges are drawn as
straight-line segments, the main goal of graph drawing is assign-
ing appropriate coordinates to graph nodes, an operation known
as graph layout. Many graph layout methods exist, e.g., force-
directed methods [Ead84,FR91], spectral methods [Hal70,BP07],
and dimensionality-reduction methods [KS80, HK04, GKN05].

In contrast to traditional GD methods, dimensionality reduction
(DR) methods typically map the graph connectivity information
to a high-dimensional space [HK04], e.g., via the graph-theoretic
distances between all pairs of nodes [KS80, KKH89]. This high-
dimensional data is then suitably mapped to 2D space to create the
graph layout. While graph drawing by DR is elegant and simple,
few methods exist in this class. This provides opportunities for im-
proved graph layout methods that take advantage of advances in
DR which provide increasingly more accurate, flexible, scalable,
and easy-to-use techniques, as described in detail in Sect. 2.

In this paper, we propose a new DR-based method for graph
drawing. We leverage t-SNE [vdMH08], one of the most acclaimed
DR methods, extensively used in machine learning, computer vi-
sion, and information visualization [MKS∗15, DJV∗14]. In con-
trast to other DR methods used for GD—which aim to preserve
distances between points when mapping these to 2D space—t-SNE
aims to preserve point neighborhoods. As we argue later on, neigh-
borhood preservation is desirable for GD. We describe a way to

encode the graph as a distance matrix, along with a suitable modifi-
cation to the standard t-SNE cost function and iteration parameters,
that allow us to map the graph’s connectivity to a 2D projection.
Our method—called tsNET, a play on ‘t-SNE’ and ‘network’—is
simple to implement and use, and has a single free parameter, per-
plexity, described in more detail in Sect. 5. Moreover, tsNET inher-
its the proven robustness and quality properties of t-SNE, and gen-
erates high quality layouts for a wide variety of graphs. We evaluate
tsNET by comparing it quantitatively and qualitatively with several
state-of-the-art methods on a representative family of real-world
and synthetic graphs.

This paper is organized as follows. Sect. 2 discusses related work
in DR and graph layouts. Sect. 3 presents our method. Sect. 4 shows
our results on a comprehensive graph benchmark. Sect. 5 discusses
tsNET, and Sect. 6 draws conclusions and outlines future work.

2. Background

Our work is related to both dimensionality reduction and graph
drawing. We review related work in both of these areas below.

2.1. Dimensionality reduction

Dimensionality reduction (DR) considers the problem of reduc-
ing the number of dimensions of a dataset while retaining rel-
evant data patterns. Given a set of N n-dimensional observa-
tions {xi ∈ Rn}N

i=1, a DR technique is a function f : Rn → Rm

that maps {xi} to a set of low-dimensional points {yi ∈ Rm}N
i=1,

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

2 J. F. Kruiger et al. / Graph Layouts by t-SNE

where m� n and typically m ∈ {2,3}, so that the so-called ‘data
structure’ is preserved [MCMT14]. DR methods can be classi-
fied into distance-preserving and neighborhood-preserving meth-
ods. Distance-preserving methods aim to minimize a cost such as
the so-called aggregated normalized stress

σ = ∑
i, j

(
d(xi,x j)−‖yi−y j‖

d(xi,x j)

)2

. (1)

Here, d(·, ·) is a distance metric over the input space of f and ‖ · ‖
is usually the Euclidean 2D distance. Such methods are used when
reasoning about inter-point distance ratios is important.

Neighborhood-preserving methods try to maximize overlap be-
tween k-nearest neighborhoods in the input (Rn) and output (Rm)
spaces, and help find groups and outliers. Distance-preserving and
neighborhood-preserving methods have related, but not identical,
aims. In particular, distance-preservation gets hard when the di-
mensionality n is high [dST03,JPC∗11]; neighborhood-preserving
methods handle high n values better [vdMH08, PLvdM∗15].

DR methods can also be classified into projections or distance-
based methods. Projections require the actual Rn coordinates of
the N input points, and thus require O(nN) in space complex-
ity [MCMT14]. Such methods are not directly applicable in a GD
setting, as we do not typically have a way to generate n-dimensional
coordinates of nodes in a graph. Distance-based methods, also
called multidimensional scaling (MDS) methods, use only the pair-
wise distances between all xi, and require O(N2) space complex-
ity [Tor52, BSL∗08]. MDS methods are more general than projec-
tions, as they do not require explicit Rn coordinates for the input
points.

In the MDS class, ISOMAP [TdSL00] first determines which
data points are neighbors in Rn, then determines geodesic distances
between these points (in Rn), and finally performs classical MDS
with the pairwise geodesic distances. LSP [PNML08] works by
first projecting a subset of the Rn points via classical MDS, and
next uses neighborhood information from Rn to place the rest of
the data points in Rm. LAMP [JPC∗11] is similar to LSP. It first
projects a subset of points via classical MDS, yet it also allows
the user to interact with the positioning of these points. IDMAP
[MPd06] uses a distance metric based on cosine similarity, and sub-
sequently makes a FastMap [FL95] projection which in turn uses
a force-based placement approach. Landmark MDS [dST03] and
PivotMDS (PMDS) [BP07] are sampling-based approximations of
classical MDS. They place representatives from the input data with
high accuracy, while remaining nodes are placed via linear combi-
nations of the representatives. Both methods are very fast. PMDS
typically produces better results as it takes into account distances
to non-representatives when placing the representatives. For a com-
plete overview of DR methods, we refer the reader to recent surveys
in the area [SVPM14, CG15].

2.2. Graph layouts

General considerations: A graph G = (V,E), also known as a net-
work or relational dataset, consists of a set of nodes V = {xi}N

i=1
and a set of edges E =

{
(xi,x j)

}
⊆ V ×V that map relations be-

tween nodes in V . Both nodes and edges can have additional data

attributes (such as weights), although many GD methods ignore
weights.

A graph layout algorithm can be seen as a function L that takes
as input a graph G and outputs a set of (typically 2D) node coor-
dinates, i.e., L(G) = {yi ∈ R2}N

i=1. We cannot describe all graph
layout techniques here; for recent comprehensive surveys on the
topic we refer to [Tam13,vLKS∗11]. Next we provide details about
graph layout methods that are particularly relevant for our goal—
drawing large and potentially highly connected graphs.

A popular choice for graph layouts is SFDP [Hu05], which is
available in GraphViz [ATT]. SFDP uses a multilevel approach
and quadtree optimizations, which makes it usable for fairly large
graphs. A drawback of SFDP is that it rigidly enforces uniform-
length edges, which can be aesthetically pleasing but does not al-
ways result in the most insightful layout.

GRIP [GK01] is a nearly linear multilevel method that uses node
filtrations based on maximal independent sets. A similar method
uses a hierarchy of progressively less coarse graphs [Wal01]. Mul-
tilevel approaches make graph layout more scalable, but assume
that pairs of nodes with small graph-theoretic distances also have
small distances in the optimal layout [Noa07a].

The r-PolyLog class of energy models [Noa07a], which contains
the LinLog energy model, aim to compromise between enforcing
uniform edge-lengths and separating highly connected node
clusters. LinLog can draw graphs that consist primarily of clusters
very well, but is less successful for other graph types.

Graph layouts by DR: A particular class of graph layout meth-
ods is explicitly based on DR techniques and we discuss these in
more detail, as they are most relevant to our method. A key to the
DR-approach is suitably defining the distance d so that minimiz-
ing the stress σ (Eqn. (1)) reflects a good layout. For this, d can be
set to the graph-theoretical shortest-path distance between nodes xi
and x j. Minimizing stress for graph drawing was originally done
by [KS80], and later by [KKH89]. NEATO [Nor04] is a popu-
lar implementation that minimizes the stress, and is available in
GraphViz [ATT]. Graph drawing by stress majorization [GKN05]
minimizes stress by means of majorization. A drawback of min-
imizing stress directly is that it fails to untangle many complex
graphs because it aims to rigidly preserve distance.

ACE [KCH03] is a very fast method that uses a matrix-
representation for the graph and several of its properties. It uses
transformations to coarser, lower-dimensional matrices, and finds
a layout that is projected back to the higher-dimensional repre-
sentation where it is adjusted to solve the original problem. ACE
works well for mesh-like graphs, but produces sub-optimal layouts
for sparsely-connected graphs, such as trees. A related multilevel
method is [FT07].

Graph drawing by high-dimensional embedding [HK04] is a
very fast method that first makes an n-dimensional embedding, us-
ing n pivot nodes and the graph-theoretic distances from those pivot
nodes to all other nodes. Subsequently, dimensionality is reduced
from n to 2 by means of PCA. This method does not work well
for non-mesh-like graphs. Also, PCA is well-known to poorly pre-

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

J. F. Kruiger et al. / Graph Layouts by t-SNE 3

serve distances when the n-dimensional data does not lie on a linear
subspace of Rn.

[Kor04] builds on the high-dimensional embedding idea by ad-
ditionally considering the high-dimensional subspace spanned by
the eigenvectors of the Laplacian matrix of the graph, and projects
this to 2D utilizing the graph’s structure. This method works well
for meshes but less so for other graph types.

ws-SNE [YPK14] proposes a general framework to theoretically
unify DR methods and GD methods. ws-SNE also uses cost terms
originating from t-SNE, but employs different distance measures
and optimization strategies than we propose here (for details, see
Sect. 3.2). More recently, s-SNE [LYC16] built further on ws-SNE
by considering spherical projections. We did not incorporate these
methods to our comparison due to the minimal implementation de-
tails of ws-SNE and the different layout space of s-SNE.

2.3. Contributions

Compared to other DR-based graph layout methods, our proposal
is characterized by the following three aspects:

• we use the neighborhood-preserving t-SNE technique rather than
the distance-preserving techniques prevalent in current methods;
• we use a modified cost function with terms based on t-SNE and

classical force-based methods;
• we use the graph-theoretical shortest-path distances in the input

space.

Additionally, we propose a refined method, tsNET*, which im-
proves over tsNET by using suitable node pre-placement. Finally,
a major contribution of our work is the extensive evaluation of sev-
eral graph layout methods on a varied set of graphs.

3. Method

We next present our graph layout method. As our method exploits
t-SNE, we first outline t-SNE (Sect. 3.1). Our method proper fol-
lows in Sect. 3.2.

3.1. t-SNE

t-SNE is a neighborhood-preserving MDS method that is often used
for creating scatterplots of high-dimensional data [vdMH08]. It
works by defining probabilities pi j of picking a point-pair in the
input space and probabilities qi j of picking a point-pair in the out-
put (2D) space. The probability pi j of picking the pair (xi,x j) is the
symmetrized version of the conditional probabilities pi| j and p j|i

pi j = p ji =
pi| j + p j|i

2N
, pii = 0,

where the conditional probabilities p j|i are given by the normalized
Gaussian distribution

p j|i = exp

(
−

d2
i j

2σ2
i

)/
∑
k

k 6=i

exp

(
− d2

ik
2σ2

i

)
, pi|i = 0,

which gives the probability that xi has x j as neighbor. Here, di j is
the distance between xi and x j in input space. The Gaussian stan-
dard deviation σi can be either hand-picked or found e.g., by binary

search so that the perplexity κi = 2
−∑

j
p j|i log2 p j|i

for every point xi
matches a user-defined value. The perplexity measures the effective
number of neighbors of a point. If xi is in a dense region, σi gener-
ally has a low value to match the perplexity. In sparser regions, σi
typically gets a large value. Finally, qi j, the probability of picking
the pair (yi,y j) in the output (2D) space, is given by

qi j = q ji =
(1+

∥∥yi−y j
∥∥2
)−1

∑
k,l
k 6=l

(1+‖yk−yl‖2)−1
, qii = 0,

which is a normalized (heavy-tailed) Student’s t-distribution.

Node positions yi in the 2D space are found by minimizing (with
respect to yi) the Kullback-Leibler divergence between the proba-
bilities of picking pairs of low- and high-dimensional data points:

CKL = ∑
i, j
i6= j

pi j log
pi j

qi j
.

This minimization is typically done using gradient descent. The
gradient ∂CKL

∂yi
is easily expressed in analytic form and the mini-

mization is therefore straightforward to implement.

t-SNE is among the best MDS methods that succeeds in em-
phasizing relevant point-groups while also capturing local variation
within groups [MKS∗15, DJV∗14].

3.2. tsNET

Given a graph G, our layout method has three steps, as follows.
We first compute the graph-theoretic shortest-path distances di j be-
tween all nodes xi and x j of G. If no path exists between xi and x j,
di j is set to a large arbitrary value. This yields a symmetric N×N
matrix D = (di j). Next, we use D to construct a cost function C as
a sum of three terms:

C = λKLCKL +
λc

2N ∑
i
‖yi‖2− λr

2N2 ∑
i, j
i 6= j

log(
∥∥yi−y j

∥∥+ εr). (2)

Here, term 1 is the Kullback-Leibler divergence from t-SNE
(Sect. 3.1); term 2 denotes so-called compression, which is known
to reduce the t-SNE optimization time [vdMH08]; and term 3 re-
pulses nodes yi to prevent undesirable clutter and attain even dis-
persion (entropy in [GHN13]). The weights λKL, λc, and λr govern
the impacts of the different terms, and do change during optimiza-
tion. A small regularization constant εr =

1
20 is added to treat sit-

uations of nearly co-located nodes. We have also considered elec-
trostatic repulsion, but finally settled on the entropy from [GHN13]
motivated by empirical results and the simple analytic form of its
gradient when εr = 0: ∂

∂yk
(1

2 ∑
i, j
i6= j

log(
∥∥yi−y j

∥∥)) = ∑
i

i 6=k

yk−yi

‖yk−yi‖2 .

The 2D node positions {yi}N
i=1 are found by minimizing C by

means of momentum-based gradient descent, as in classical t-SNE.
For this, we propose a three-stage method. First, we randomly ini-
tialize yi. Secondly, we do momentum-based gradient descent opti-
mization on C with (λKL,λc,λr) = (1,1.2,0) until the summed dis-
placement of nodes in the layout is smaller than a given threshold.

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

4 J. F. Kruiger et al. / Graph Layouts by t-SNE

In the third stage, we use the node positions to do the same opti-
mization, but with (λKL,λc,λr) = (1,0.01,0.6). The second stage
aims at accelerating the ‘untangling’ of the graph with the aid of
compression. The third stage optimizes for the final layout where
we want to prevent too closely placed vertices and the fisheye dis-
tortion introduced by high λc. We call the above method tsNET.

As a refinement of this method, we initialize yi using Pivot-
MDS in stage 1, and then in stage 2 use the parameter settings
(λKL,λc,λr) = (1,0.1,0). Stage 3 remains unchanged. The weight
of the compression term in stage 2 has been lowered to prevent it
from distorting the PivotMDS layout. We call this method tsNET*.
Section 4 will show the advantages of tsNET* over tsNET.

To better explain the effect of the individual cost terms, Fig. 1
shows layouts computed with and without certain cost terms on
a graph of 1005 nodes and 3808 edges. We see that plain t-SNE
(λc = λr = 0), shown in Fig. 1a, generates a layout with unde-
sired occlusions, folds, an uneven node density, and has a slow
convergence (requires many iterations). As such, plain t-SNE is
not enough to generate a good graph drawing. Such aspects are
removed by the additional components of tsNET and tsNET*, as
Figs. 1b to 1e show. We observed similar effects on other graphs
we tested (which are introduced further in Sect. 4.1).

(a) Plain t-SNE:
1027 iterations

(b) t-SNE + early
compression:

1167 iterations

(c) t-SNE + late
repulsion:

1387 iterations

(d) tsNET:
522 iterations

(e) tsNET*:
307 iterations

Figure 1: The effect of the additional cost terms, with the number
of gradient descent iterations needed for convergence.

Important differences exist between ws-SNE and tsNET. First,
ws-SNE uses different cost functions: Different repulsion terms
are used (compare Eqn. (2), term 3, with ∑i j pi j

∥∥yi−y j
∥∥2

+

λ∑i j Mi j exp(−
∥∥yi−y j

∥∥2
) from [YPK14]). We use a compression

term (Eqn. (2), term 2) to reduce optimization time. To our un-
derstanding, ws-SNE does not (and cannot) use such a term, as it
relies on so-called separable divergences (sums of pairwise terms
depending on data points i and j). Moreover, ws-SNE uses the de-
gree centrality of nodes in its repulsion term (Mi j in the above ex-
pression), to favor good placement of central nodes. As shown next
in Sect. 4, we obtain good results even without computing such a
term, which can be expensive for large graphs. Finally, we compute

pi j from shortest-path distances, whereas ws-SNE assumes that pi j
are computed from the k-nearest-neighbors of graph nodes; how-
ever, how this is precisely done is not specified in [YPK14], nor are
shortest-path distances named in this context.

We have implemented tsNET in Python 3, using the Theano nu-
merical library [BBB∗]. Our open source is available online at
[Kru16]. Its space and time complexities are O (N2) and O (tN2),
resp., with t the number of gradient descent iterations—around sev-
eral hundreds in our benchmark. If desired, massive accelerations
are easily doable, see further Sect. 5.

4. Evaluation

We evaluate our layout method by comparing it to several state-of-
the-art layout methods on a set of synthetic and real-world graphs
with various sizes (Sect. 4.1). Sect. 4.2 compares the obtained
graph layouts visually. Sects. 4.3 to 4.5 compare layouts via sev-
eral quantitative metrics. Sect. 4.6 compares running times for our
methods. Sect. 4.7 shows how our layouts can be further enhanced
by edge bundling. Finally, Sect. 4.8 demonstrates that our method
can also construct 3D layouts.

4.1. Benchmark

To evaluate tsNET(*), we used a wide set of graphs and layout
methods, as follows.

Tab. 1 lists the graphs we used for benchmarking. These include
real-world collaboration networks, structural problems from the
Harwell-Boeing collection [DGL89a], mesh-like graphs, and tree-
like graphs. Many of our graphs come from the Florida collection
[DH11], a well-known source for graph drawing and graph analy-
sis. Other sources are synthetic graphs computed with [Pei14,ATT]
and graphs from [MAH∗12] (a recent DR-based graph layout
method). These graphs are used in additional papers beyond those
listed in Tab. 1. However, these could not all be included for space
reasons.

We compare tsNET(*) with the following layout methods:

IDMAP [MPd06], as implemented in VisPipeline [POM07];

LSP [PNML08], as implemented in VisPipeline [POM07], with
number of control points set to 10% of the number of nodes;

PMDS [BP07], as implemented in Tulip 4.8.1 [Aub04], with num-
ber of pivots set to 10% of the number of nodes;

SFDP [Hu05], as implemented in GraphViz 2.38 [ATT];

LinLog [Noa07a], as implemented by the author [Noa07b];

GRIP [GK01], as implemented by the authors [Yus01]. The GRIP
implementation in Tulip was also evaluated, but it produced visu-
ally inferior results, which are not shown here.

NEATO [Nor04], as implemented in GraphViz 2.38 [ATT];

All compared methods are well-known, and have open-source im-
plementations, which makes it easy to replicate our experiments.
We chose IDMAP and LSP, which are DR projections, specifically
to show the advantages of our t-SNE-based method as opposed to
other DR methods. We chose GRIP, PMDS, SFDP, and LinLog
since these are well-known methods, present in many graph draw-
ing papers. However, it is fair to note that these methods do not

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

J. F. Kruiger et al. / Graph Layouts by t-SNE 5

Name Type |V | |E| Source Also seen in
dwt_72 planar, structural 72 75 [DGL89b] [HBFR14]
lesmis collaboration network 77 254 [Knu93]
can_96 mesh-like, structural 96 336 [DGL89b] [HBFR14]
rajat11 miscellaneous 135 377 [Raj]
jazz collaboration network 198 2742 [GD03]
visbrazil collaboration network 222 336 [MAH∗12]
grid17 planar, mesh-like, structural 289 544 synthesized using [Pei14]
mesh3e1 mesh-like, structural 289 800 [NAS] [Tam13]
netscience collaboration network 379 914 [New06] [GJ12]
dwt_419 structural 419 1572 [DGL89b] [PV13, HBFR14]
price_1000 planar, tree 1000 999 synthesized using [Pei14]
dwt_1005 structural 1005 3808 [DGL89b] [OKB16]
cage8 miscellaneous 1015 4994 [VHBB02]
bcsstk09 mesh-like, structural 1083 8677 [DGL89b] [FT07]
block_2000 clusters 2000 9912 synthesized using [Pei14]
sierpinski3d structural 2050 6144 synthesized using [ATT] [GK01]
CA-GrQc collaboration network 4158 13422 [New01] [BG13]
EVA collaboration network 4475 4652 [NLGC02]
3elt planar, mesh-like 4720 13722 [DP] [Wal01, OKB16, FT07]
us_powergrid structural 4941 6594 [WS98] [OKB16, GHK13]

Table 1: Types and sizes of graphs in our benchmark. All graphs we used are publicly available, as indicated.

use a ‘full stress’ model, in contrast to ours. On the other hand, we
compare also with NEATO, which does use such a model. For all
graphs, we use the same method parameters, as given in Sect. 3.2,
except λr = 0.1 for dwt_72, which gave better results.

4.2. Visual comparison

Tabs. 5 and 6 visually compare the obtained layouts; rows indi-
cate graphs, and columns indicate layout methods. We see that
tsNET* is of the same or, we argue, in some cases higher visual
quality than the compared layouts, in terms of node clutter, mini-
mizing unnecessary distortions, and preserving symmetry in the in-
put graphs. Edge length distribution, encoded in edge color, shows
that tsNET* slightly favors short edges (column 2 in Tabs. 5 and 6
shows relatively more red than the other columns). Yet, this does
not adversely affect the visual quality of the layouts. Another in-
teresting point is that tsNET* has a wider edge-length distribution
than most other layouts. For instance, for dwt_1005, block_2000
and 3elt, our method chooses to draw a few long edges (blue) but
keeps most other edges short (red). This selectively ‘pulls apart’ a
few connected nodes so that the layout is nicely spread out over
the 2D plane. Another finding is that our layouts appear more
smooth and organic than others; structurally-similar graph regions,
e.g., in mesh-like graphs (dwt_1005, bcsstk09, can_96, grid17,
mesh3e1, and dwt_419) also appear structurally similar in our lay-
outs, whereas some of the other methods produce unnecessary de-
formations. Finally, we see that tsNET* improves upon tsNET by
removing artifacts where part of the tsNET layout is ‘folded over’,
see e.g., can_96, dwt_1005 and 3elt.

4.3. Normalized stress metric

A compact way to assess the distance-preservation of a layout
is to use the scalar normalized stress metric σ (Eqn. (1)), see
e.g., [OKB16, GHN13]. Tab. 2 shows σ for all considered lay-
outs. We see that tsNET(*) do not reach significantly better val-
ues than all other considered methods. In particular, NEATO, GRIP

and IDMAP perform better here. Yet, if we look at the actual lay-
outs (Tabs. 5 and 6), IDMAP and GRIP deliver arguably worse
results—lack of symmetry preservation (IDMAP on dwt_1005, bc-
sstk09), weak cluster preservation (block_2000),unnecessary dis-
tortions (3elt, IDMAP and GRIP on bcsstk09), and folding arti-
facts (NEATO on dwt_419, dwt_1005). Specifically, consider the
low stress values of NEATO, IDMAP and GRIP on block_2000. It
is evident that the stress metric does not capture the quality aspects
that we require for this graph. This makes us hypothesize that pure
distance preservation might not be the ideal aim of a good graph
layout method. Rather, having groups of nodes topologically close
in the graph be also geometrically close in the layout allows read-
ing the drawing well [Tam13,Noa07a]. This neighbor preservation,
discussed in Sect. 4.5, is precisely what tsNET aims at.

tsNET tsNET* IDMAP LSP PMDS SFDP LinLog GRIP NEATO
dwt_72 0.048 0.048 0.039 0.118 0.072 0.061 0.201 0.038 0.043
lesmis 0.109 0.111 0.111 0.226 0.162 0.112 0.219 0.099 0.084
can_96 0.112 0.084 0.085 0.088 0.092 0.075 0.091 0.104 0.072
rajat11 0.096 0.097 0.097 0.098 0.107 0.096 0.194 0.074 0.064
jazz 0.127 0.128 0.126 0.155 0.158 0.137 0.387 0.114 0.110
visbrazil 0.098 0.098 0.083 0.113 0.157 0.081 0.474 0.089 0.068
grid17 0.021 0.021 0.016 0.026 0.025 0.023 0.210 0.018 0.014
mesh3e1 0.014 0.014 0.004 0.006 0.003 0.036 0.076 0.009 0.005
netscience 0.101 0.100 0.075 0.096 0.103 0.105 0.182 0.070 0.063
dwt_419 0.024 0.024 0.023 0.022 0.026 0.052 0.112 0.022 0.054
price_1000 0.165 0.160 0.117 0.159 0.242 0.133 0.190 0.126 0.093
dwt_1005 0.152 0.035 0.030 0.030 0.029 0.029 0.219 0.026 0.096
cage8 0.185 0.203 0.151 0.142 0.140 0.147 0.207 0.150 0.122
bcsstk09 0.022 0.022 0.037 0.027 0.066 0.024 0.096 0.021 0.015
block_2000 0.193 0.189 0.164 0.205 0.181 0.162 0.302 0.155 0.144
sierpinski3d 0.077 0.093 0.152 0.092 0.091 0.079 0.310 0.068 0.063
CA-GrQc 0.182 0.189 0.150 0.175 0.182 0.148 0.220 0.172 0.129
EVA 0.171 0.161 0.148 0.141 0.233 0.124 0.325 0.149 0.098
3elt 0.110 0.090 0.052 0.045 0.057 0.060 0.317 0.049 0.046
us_powergrid 0.150 0.101 0.074 0.080 0.090 0.094 0.271 0.091 0.058
average 0.103 0.094 0.083 0.097 0.106 0.085 0.219 0.078 0.069

Normalized stress (rel.)
low (good) high (bad)

mean

Table 2: Normalized stress (Eqn. (1)). Layouts are uniformly scaled
to give the minimal stress value. Cell colors encode the relative
stress on the same row.

4.4. Distance preservation plots

Another measure used to evaluate the quality of a graph layout,
or projection, is to look at the correlation between inter-point dis-

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

6 J. F. Kruiger et al. / Graph Layouts by t-SNE

tances in input vs. output space [BP09, GHN13, JPC∗11]. Fig. 2
shows such plots for our considered graphs and methods. Here,
grayscale encodes the density of point-pairs (darker=more). Both
input and output space distances are normalized by the largest dis-
tances in the individual spaces. Such plots help see how well graph-
theoretic distances are preserved in the layout—for a perfect preser-
vation, the plot is a diagonal line. Note that the x-axis is discrete,
since D contains graph-theoretic distances.

The plots for tsNET* do not show a larger spread (with respect to
the diagonal) than those of compared methods. This is very interest-
ing, since our underlying t-SNE method does not aim to preserve
distances, but neighborhoods, as explained in Sect. 3. Moreover,
the absence of dark regions close to the x-axis for tsNET(*) indi-
cates that our layouts have few false neighbors, i.e., nodes are well
spread out in the available 2D layout space. The gaps in the plots for
block_2000 by tsNET(*) and LinLog indicate that graph clusters
are well separated. Yet, although LinLog can separate such clus-
ters, it performs worse than our method for other types of graphs
(see dwt_1005, 3elt and us_powergrid). Also, the cluster separation
of LinLog is arguably of lower quality than ours, given the dark
regions in the bottom-right part of its plot for block_2000, which
indicate false neighbors. Another, more general observation from
the plots in Fig. 2 is that the distribution of points for tsNET(*)
tends to be more symmetric with respect to the diagonal, i.e., there
is a balance between the number of point-pairs in the layout that
are false neighbors and those that are missing neighbors.

4.5. Neighborhood preservation metric

As argued in Sect. 4.3, we aim to provide a good graph layout
by preserving neighbors rather than distances. To measure this,
we use a neighborhood preservation metric similar to [GHN13].
While [GHN13] use a fixed neighborhood size, we change this size
according to the position of a node in the graph. For every node xi
in a graph G = (V,E), we define a neighborhood NG(xi,rG) as the
nodes with a graph-theoretic distance of at most rG from xi, i.e.,

NG(xi,rG) =
{

x j ∈V | di j ≤ rG
}
.

Likewise, we define an equally sized neighborhood of xi in the
layout NY (xi,ki) as the set of nodes corresponding to the points
that are the ki-nearest-neighbors of yi in the 2D layout space, with
ki = |NG(xi,rG)|. The neighborhood preservation ν is next defined
as the fraction of nodes that are shared by these neighborhoods,
averaged over all nodes in G, i.e.,

ν =
1
|V |∑i

|NG(xi,rG)∩NY (yi,ki)|
|NG(xi,rG)∪NY (yi,ki)|

.

This is the Jaccard similarity between the neighborhoods NG and
NY , averaged over G. Simply put, ν tells how well the 2D (layout)
neighborhoods match the input (graph) neighborhoods [MMT15].

Tab. 3 shows ν for all our tests for rG = 2. Evaluations for
rG ∈ {1,3} yielded similar results, omitted here for space reasons.
The table shows very good results for tsNET(*): Not only does
tsNET(*) often outperform other methods, it also does so by a large
margin. In cases where tsNET(*) is below the median, the margins
are small. Since the metric ν is an inverse measure of the number
of false and missing neighbors, it is related to the observation about

Figure 2: Plots of pairs of input (x-axis) and output (y-axis)
distances. Gray value encodes the density of graph-distance vs.
Euclidean-distance pairs.

false neighbors in the previous section. This good performance of
tsNET(*) is directly related to the neighbor-preserving nature of
t-SNE.

4.6. Running time

Tab. 4 gives the running time for tsNET(*) for the larger graphs in
our benchmark, using the Python-based implementation, on a 3.4
GHz PC running Linux. We see that tsNET* provides a speed-up
over tsNET of about 15% on average. Although our Python imple-
mentation is not fast, it is simple and easy to understand and use
(see also our code [Kru16]). If running time is an important con-
sideration, more efficient t-SNE implementations in C, using GPU
acceleration [vdM] or quadtrees [vdM14, PLvdM∗15] can be di-
rectly used instead. Our method adds little overhead to t-SNE, as
the PivotMDS preprocessor used for tsNET* takes less than a sec-
ond on all tested graphs.

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

J. F. Kruiger et al. / Graph Layouts by t-SNE 7

tsNET tsNET* IDMAP LSP PMDS SFDP LinLog GRIP NEATO
dwt_72 0.855 0.855 0.770 0.676 0.732 0.714 0.692 0.914 0.828
lesmis 0.715 0.712 0.748 0.642 0.674 0.729 0.649 0.666 0.695
can_96 0.658 0.671 0.535 0.530 0.515 0.547 0.540 0.533 0.565
rajat11 0.716 0.717 0.675 0.638 0.624 0.661 0.637 0.634 0.655
jazz 0.805 0.804 0.842 0.791 0.827 0.840 0.777 0.824 0.817
visbrazil 0.589 0.584 0.476 0.449 0.414 0.471 0.542 0.452 0.425
grid17 0.785 0.785 0.812 0.750 0.727 0.751 0.369 0.804 1.000
mesh3e1 0.904 0.904 0.993 0.957 0.994 0.809 0.587 0.896 0.999
netscience 0.711 0.707 0.539 0.583 0.473 0.622 0.614 0.559 0.510
dwt_419 0.739 0.741 0.723 0.741 0.695 0.654 0.542 0.751 0.658
price_1000 0.639 0.639 0.483 0.469 0.422 0.528 0.594 0.216 0.284
dwt_1005 0.609 0.619 0.512 0.503 0.485 0.523 0.390 0.516 0.455
cage8 0.435 0.437 0.207 0.278 0.221 0.235 0.349 0.193 0.200
bcsstk09 0.867 0.867 0.767 0.795 0.602 0.835 0.565 0.856 0.973
block_2000 0.374 0.372 0.205 0.279 0.166 0.287 0.339 0.155 0.160
sierpinski3d 0.579 0.580 0.387 0.492 0.326 0.534 0.438 0.549 0.561
CA-GrQc 0.480 0.483 0.170 0.207 0.179 0.183 0.349 0.081 0.119
EVA 0.801 0.802 0.707 0.706 0.717 0.696 0.780 0.406 0.459
3elt 0.663 0.715 0.415 0.485 0.384 0.595 0.248 0.576 0.506
us_powergrid 0.454 0.457 0.234 0.353 0.253 0.429 0.409 0.233 0.215
average 0.842 0.852 0.469 0.426 0.296 0.541 0.333 0.386 0.399

Neighborhood preservation (rel.)
least preserving (bad) most preserving (good)

 mean

Table 3: Neighborhood preservation metric ν for rG = 2 (higher is
better), indicating how well the input (graph) and output (layout)
node-neighborhoods match. Cell colors encode ν on the same row.

tsNET (s) tsNET* (s) tsNET*
(% of tsNET)

dwt_72 3.2 3.1 96%

lesmis 4.2 4.7 110%

can_96 3.3 3.6 110%

rajat11 4.3 3.8 89%

jazz 5.1 4.6 91%

visbrazil 10.2 12.4 121%

grid17 5.5 5.3 97%

mesh3e1 5.9 5.5 94%

netscience 9.4 9.3 99%

dwt_419 9.7 7.5 78%

price_1000 182.7 100.8 55%

dwt_1005 63.9 39.4 62%

cage8 59.5 54.0 91%

bcsstk09 35.2 32.9 94%

block_2000 252.7 151.1 60%

sierpinski3d 332.9 206.6 62%

CA-GrQc 911.3 879.3 96%

EVA 1388.3 838.0 60%

3elt 1781.1 1303.1 73%

us_powergrid 1029.9 722.2 70%

Table 4: Running time in seconds of tsNET and tsNET*.

4.7. Bundled layouts

Sect. 4.2 shows that tsNET can retain neighborhoods successfully,
at the expense of introducing a few long edges. We can reduce the
clutter created by these with the help of edge bundling, [vdZCT16].
For this, we bundle the long edges, but keep the short ones un-
changed (Fig. 3). This is easily done by modifying any exist-
ing general graph-bundling method to enforce a maximal edge-
displacement δ as a function of the edge length, where we set
δ = 0.25. The result is a ‘hybrid’ graph-drawing in which short
edges are straight lines (as in classical graph drawings) and long
edges are bundled, thereby reducing clutter. To our knowledge, this
is the first time that selective bundling has been applied in this way
to declutter the drawing of graphs. This method helps one clearly
see which parts of the graph layout have been ‘torn off’ by tsNET
to achieve a globally optimal node placement. Of course, bundling
is also applicable to tsNET* layouts. We chose the tsNET layouts
(most notably 3elt) to illustrate this idea as they contained more
long edges that could benefit from bundling.

4.8. 3D layouts

As the formulation of tsNET is independent of the output-space di-
mension, it is interesting to study its ability to produce 3D graph

Figure 3: tsNET unbundled (left) and bundled layouts (right) for
jazz, cage8, block_2000, and 3elt. Edge colors encode edge lengths
((dark) red = shortest, green = median, blue = longest).

layouts. To do this, we consider the problem of recovering geomet-
ric information from topological information present in 3D meshes,
similar to work presented in [GK01,Wal01]: Given a mesh (Fig. 4,
left), we consider the graph G given by its vertices V and cell-edges
E. Next, we use tsNET to create a 3D layout of G (Fig. 4, right).

The tsNET reconstructions preserve the local regular structure of
the input meshes (Fig. 4, right). This can be attributed to the fact
that the underlying t-SNE technique is very well suited to preserve
neighbors.

More importantly, we see that tsNET can reconstruct the high-
level structure of the input shapes well, see e.g., relative sizes and
positions of the horse’s head and four limbs. However, reconstruc-
tion of the exact positions of mesh parts is not possible. This is
not surprising, as Euclidean distances between nodes in the original
mesh are not reflected by their graph-theoretical distances. E.g., the
back hooves of the horse are geometrically quite close, but graph-
theoretically far away, and will therefore not be placed as close
together. Also, certain shape parts, such as the horse’s limbs, can
be articulated in the original mesh without significantly modifying

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

8 J. F. Kruiger et al. / Graph Layouts by t-SNE

the graph-theoretical distance matrix. These shape parts will be po-
sitions by tsNET in ways that may not match their original geomet-
rical positions. Finally, let us stress that the aim of this illustration
is not to claim that tsNET can be used as a standalone method for
3D geometry reconstruction from topology data; rather, we aim to
show that tsNET can be used to construct 3D graph layouts as eas-
ily as for 2D layouts.

Figure 4: Original 3D meshes (left) and meshes reconstructed with
tsNET in 3D (right).

5. Discussion

We discuss next several properties of our method.

Ease of use: Our method depends on a single parameter: the
perplexity κ, inherited from t-SNE (Sect. 3.2), which was on
average 80, with a standard deviation of 45, for all our tests, except
EVA (Tab. 6), where t-SNE needed κ = 600 to converge. This
sensitivity of t-SNE with respect to κ is also documented in other
works, e.g. [WVJ16]. Apart from this, no other parameters are
required, which is an advantage against other methods that rely on
careful fine-tuning of multiple parameters.

Determinism: The tsNET algorithm is not deterministic, given
the random point initialization of t-SNE [vdMH08]. However,
tsNET*, which initializes 2D node positions using PivotMDS
(Sect. 3), is deterministic, since PivotMDS is so. This important
property guarantees that, given the same graph, tsNET* produces
the same layout.

Robustness: We produce good layouts for different types of
graphs, without fine-tuning parameters, whereas many other
methods we are aware of handle only graphs of a certain type well.

Scalability: It is important to note that speed is not our main goal,
but rather the quality of our layouts obtained by the novel use of
t-SNE. As mentioned in Sect. 4.6, speed-ups can be obtained with
the help of more advanced t-SNE implementations (at the expense
of code complexity). In fairness, however, we should mention that
such speed-ups do not accelerate the computation of the input
distance matrix, which is O(|V |2).

Generalizability: We currently use the graph’s shortest-path dis-
tances to encode the graph information for the layout. More so-
phisticated distance metrics can be explored, by incorporating e.g.,
betweenness centrality [BG13] in the distance metric, or using
Markov-chain models of random walks [BG14]. Also, approxima-
tions of shortest-path distances can be considered for larger graphs
where computation of the full shortest-path distance matrix is ex-
pensive. Finally, given that our layout method is deterministic, it
can be generalized for dynamic graphs, using recent developments
for projecting time-dependent data with t-SNE [RFT16].

6. Conclusion

We presented the tsNET and tsNET* methods for computing 2D
layouts of graphs. Our work shows that modern dimensionality re-
duction methods are a good alternative to classical graph layout
techniques. From a practical standpoint, our methods are simple
to implement, and have compact mathematical formulations, lever-
aging the proven t-SNE method for dimensionality reduction. Ex-
tensive visual and quantitative evaluations show that our methods
result in excellent quality when compared to state-of-the-art meth-
ods.

There are several natural directions for future work. First, ap-
proximate versions of t-SNE can be used to significantly accelerate
our methods. Second, node and edge weights can be incorporated
in the distance metric to provide a more detailed representation of
the given graph. Third, 3D layouts as in Fig. 4 can be further in-
vestigated. Finally, a direct extension of our methods to computing
layouts of time-dependent graphs can be investigated, given recent
developments in dynamic t-SNE [RFT16].

7. Acknowledgements

This work was partly supported by the project MOTO (H2020-
SESAR-2015-1), grant 699379, offered by the European Commis-
sion.

References
[ATT] Graphviz – graph visualization software. www.graphviz.org. [ac-

cessed 07-11-2016]. 2, 4, 5

[Aub04] AUBER D.: Tulip - a huge graph visualization framework. In
Proc. Graph Drawing. Springer, 2004, pp. 105–126. 4

[BBB∗] BERGSTRA J., BREULEUX O., BASTIEN F., LAMBLIN P., PAS-
CANU R., DESJARDINS G., TURIAN J., WARDE-FARLEY D., BENGIO
Y.: Theano: A CPU and GPU math compiler in python. 4

[BG13] BAINGANA B., GIANNAKIS G. B.: Centrality-constrained graph
embedding. In Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal
Processing (2013), pp. 3113–3117. 5, 8

[BG14] BAINGANA B., GIANNAKIS G.: Embedding Graphs un-
der Centrality Constraints for Network Visualization. arXiv preprint
arXiv:1401.4408 (2014). URL: http://arxiv.org/abs/1401.4408, arXiv:
1401.4408. 8

[BP07] BRANDES U., PICH C.: Eigensolver methods for progressive
multidimensional scaling of large data. In Proc. Graph Drawing (2007),
pp. 42–53. 1, 2, 4

[BP09] BRANDES U., PICH C.: An experimental study on distance-
based graph drawing. In Proc. Graph Drawing (2009), pp. 218–229.
6

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

www.graphviz.org
http://arxiv.org/abs/1401.4408
http://arxiv.org/abs/1401.4408
http://arxiv.org/abs/1401.4408

J. F. Kruiger et al. / Graph Layouts by t-SNE 9

tsNET tsNET* IDMAP LSP PMDS SFDP LinLog GRIP NEATO
dw

t_
72

le
sm

is
ca

n_
96

ra
ja

t1
1

ja
zz

vi
sb

ra
zi

l
gr

id
17

m
es

h3
e1

ne
ts

ci
en

ce
dw

t_
41

9

Edge length
short long

Table 5: Comparison of graph layouts (1/2). Rows and columns correspond to different graphs and layout methods. Edge colors encode their
lengths.

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

10 J. F. Kruiger et al. / Graph Layouts by t-SNE

tsNET tsNET* IDMAP LSP PMDS SFDP LinLog GRIP NEATO
pr

ic
e_

10
00

dw
t_

10
05

ca
ge

8
bc

ss
tk

09
bl

oc
k_

20
00

si
er

pi
ns

ki
3d

C
A

-G
rQ

c
E

VA
3e

lt
us

_p
ow

er
gr

id

Edge length
short long

Table 6: Comparison of graph layouts (2/2). Rows and columns correspond to different graphs and layout methods. Edge colors encode their
lengths.

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

J. F. Kruiger et al. / Graph Layouts by t-SNE 11

[BSL∗08] BUJA A., SWAYNE D., LITTMAN M., DEAN N., HOFMANN
H., CHEN L.: Data visualization with multidimensional scaling. J Comp
Graph Stat 17, 2 (2008), 444–472. 2

[CG15] CUNNINGHAM J. P., GHAHRAMANI Z.: Linear dimensionality
reduction: Survey, insights, and generalizations. JMLR 16 (2015), 2859–
2900. 2

[DGL89a] DUFF I. S., GRIMES R. G., LEWIS J. G.: Sparse matrix test
problems. ACM Transactions on Mathematical Software (TOMS) 15, 1
(1989), 1–14. 4

[DGL89b] DUFF I. S., GRIMES R. G., LEWIS J. G.: Sparse matrix test
problems. ACM TOMS 15, 1 (1989), 1–14. 5

[DH11] DAVIS T. A., HU Y.: The university of Florida sparse matrix
collection. ACM TOMS 38, 1 (2011), 1:1–1:25. 4

[DJV∗14] DONAHUE J., JIA Y., VINYALS O., HOFFMAN J., ZHANG
N., TZENG E., DARRELL T.: DeCAF: A deep convolutional activation
feature for generic visual recognition. In Proc. ICML (2014), vol. 32,
pp. 647–655. 1, 3

[DP] DIEKMANN T., PREIS R.: AG-Monien/3elt sparse matrix. www.
cise.ufl.edu/research/sparse/matrices/AG-Monien/3elt.html. Accessed
12-10-2016. 5

[dST03] DE SILVA V., TENENBAUM J. B.: Global versus local methods
in nonlinear dimensionality reduction. Advances in Neural Information
Processing Systems 15 (2003), 705–712. 2

[Ead84] EADES P.: A heuristics for graph drawing. Congressus numer-
antium 42 (1984), 146–160. 1

[FL95] FALOUTSOS C., LIN K.-I.: FastMap: a fast algorithm for index-
ing, data-mining and visualization of traditional and multimedia datasets.
Proc. ACM SIGMOD 24, 2 (1995), 163–174. 2

[FR91] FRUCHTERMAN T. M. J., REINGOLD E. M.: Graph drawing
by force-directed placement. Software –Practice and Experience 21, 11
(1991), 1129–1164. 1

[FT07] FRISHMAN Y., TAL A.: Multi-level graph layout on the gpu.
IEEE Transactions on Visualization and Computer Graphics 13, 6
(2007), 1310–1319. 2, 5

[GD03] GLEISER P. M., DANON L.: Community structure in Jazz. Ad-
vances in complex systems 6, 04 (2003), 565–573. 5

[GHK13] GANSNER E. R., HU Y., KRISHNAN S.: COAST: A convex
optimization approach to stress-based embedding. In Proc. Graph Draw-
ing (2013). 5

[GHN13] GANSNER E. R., HU Y., NORTH S.: A maxent-stress model
for graph layout. IEEE TVCG 19, 6 (2013), 927–940. 3, 5, 6

[GJ12] GRONEMANN M., JÜNGER M.: Drawing clustered graphs as to-
pographic maps. In Proc. Graph Drawing (2012), pp. 426–438. 5

[GK01] GAJER P., KOBOUROV S. G.: GRIP: Graph drawing with intel-
ligent placement. In Proc. Graph Drawing (2001), pp. 222–228. 2, 4, 5,
7

[GKN05] GANSNER E. R., KOREN Y., NORTH S.: Graph drawing by
stress majorization. Proc. Graph Drawing (2005), 239–250. 1, 2

[Hal70] HALL K. M.: An r-dimensional quadratic placement algorithm.
Management science 17, 3 (1970), 219–229. 1

[HBFR14] HAMON R., BORGNAT P., FLANDRIN P., ROBARDET C.:
Discovering the structure of complex networks by minimizing cyclic
bandwidth sum. arXiv preprint arXiv:1410.6108 (2014). 5

[HK04] HAREL D., KOREN Y.: Graph drawing by high-dimensional em-
bedding. JGAA 8, 2 (2004), 195–214. 1, 2

[Hu05] HU Y.: Efficient, high-quality force-directed graph drawing.
Mathematica Journal 10, 1 (2005), 37–71. 2, 4

[JPC∗11] JOIA P., PAULOVICH F., COIMBRA D., CUMINATO J.,
NONATO L.: Local affine multidimensional projection. IEEE TVCG
17, 12 (2011), 2563–2571. 2, 6

[KCH03] KOREN Y., CARMEL L., HAREL D.: Drawing huge graphs by
algebraic multigrid optimization. Multiscale Modeling & Simulation 1,
4 (2003), 645–673. 2

[KKH89] KAMADA T., KAWAI S., HEHNER E.: An algorithm for draw-
ing general undirected graphs. Inform Process Lett 31, April (1989),
7–15. 1, 2

[Knu93] KNUTH D. E.: The Stanford GraphBase: a platform for combi-
natorial computing, vol. 37. 1993. 5

[Kor04] KOREN Y.: Graph drawing by subspace optimization. Proc.
VisSym (2004), 65–74. 3

[Kru16] KRUIGER J. F.: tsNET. https://github.com/HanKruiger/tsNET/,
2016. 4, 6

[KS80] KRUSKAL J. B., SEERY J. B.: Designing network diagrams. In
Proc. !st General Conf. on Social Graphics (1980), pp. 22–50. 1, 2

[LYC16] LU Y., YANG Z., CORANDER J.: Doubly stochastic neighbor
embedding on spheres. CoRR abs/1609.01977 (2016). 3

[MAH∗12] MARTINS R. M., ANDERY G. F., HEBERLE H.,
PAULOVICH F. V., DE ANDRADE LOPES A., PEDRINI H., MINGHIM
R.: Multidimensional projections for visual analysis of social networks.
Journal of Computer Science and Technology 27, 4 (2012), 791–810. 4,
5

[MCMT14] MARTINS R., COIMBRA D., MINGHIM R., TELEA A.: Vi-
sual analysis of dimensionality reduction quality for parameterized pro-
jections. Computers & Graphics 41, 1 (2014), 26–42. 2

[MKS∗15] MNIH V., KAVUKCUOGLU K., SILVER D., RUSU A., VE-
NESS J., BELLEMARE M., GRAVES A., RIEDMILLER M., FIDJE-
LAND A., OSTROVSKI G., PETERSEN S., BEATTIE C., SADIK A.,
ANTONOGLOU I., KING H., KUMARAN D., WIERSTRA D., LEGG S.,
HASSABIS D.: Human-level control through deep reinforcement learn-
ing. Nature 518, 7540 (2015), 529–533. 1, 3

[MMT15] MARTINS R., MINGHIM M., TELEA A.: Explaining neigh-
borhood preservation for multidimensional projections. In Proc. CGVC
(2015), Eurographics. 6

[MPd06] MINGHIM R., PAULOVICH F. V., DE ANDRADE LOPES A.:
Content-based text mapping using multi-dimensional projections for ex-
ploration of document collections. Proc. SPIE 6060 (2006). 2, 4

[NAS] NASA: Pothen/mesh3e1 sparse matrix. www.cise.ufl.edu/
research/sparse/matrices/Pothen/mesh3e1. [accessed 09-03-2016]. 5

[New01] NEWMAN M. E.: The structure of scientific collaboration net-
works. PNAS 98, 2 (2001), 404–409. 5

[New06] NEWMAN M. E.: Finding community structure in networks
using the eigenvectors of matrices. Phys Rev E 74, 3 (2006), 036104. 5

[NLGC02] NORLEN K., LUCAS G., GEBBIE M., CHUANG J.: EVA: Ex-
traction, visualization and analysis of the telecommunications and media
ownership network. In Proc. ITS (2002). 5

[Noa07a] NOACK A.: Energy models for graph clustering. JGAA 11, 112
(2007), 453–480. 2, 4, 5

[Noa07b] NOACK A.: Lin-log layout. code.google.com/archive/p/
linloglayout, 2007. [accessed 31-10-2016]. 4

[Nor04] NORTH S. C.: Drawing graphs with NEATO. NEATO User
manual (2004). 2, 4

[OKB16] ORTMANN M., KLIMENTA M., BRANDES U.: A sparse stress
model. In Proc. Graph Drawing (2016). 5

[Pei14] PEIXOTO T. P.: The graph-tool python library. figshare (2014).
URL: figshare.com/articles/graph_tool/1164194. 4, 5

[PLvdM∗15] PEZZOTTI N., LELIEVELDT B., VAN DER MAATEN L.
J. P., HÖLLT T., EISEMANN E., VILANOVA A.: Approximated and
User Steerable tSNE for Progressive Visual Analytics. IEEE TVCG
2626, 99 (2015), 1–15. 2, 6

[PNML08] PAULOVICH F., NONATO L., MINGHIM R., LEVKOWITZ

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

www.cise.ufl.edu/research/sparse/matrices/AG-Monien/3elt.html
www.cise.ufl.edu/research/sparse/matrices/AG-Monien/3elt.html
https://github.com/HanKruiger/tsNET/
www.cise.ufl.edu/research/sparse/matrices/Pothen/mesh3e1
www.cise.ufl.edu/research/sparse/matrices/Pothen/mesh3e1
code.google.com/archive/p/linloglayout
code.google.com/archive/p/linloglayout
figshare.com/articles/graph_tool/1164194

12 J. F. Kruiger et al. / Graph Layouts by t-SNE

H.: Least square projection: A fast high-precision multidimensional pro-
jection technique and its application to document mapping. IEEE TVCG
14, 3 (2008), 564–575. 2, 4

[POM07] PAULOVICH F., OLIVEIRA M., MINGHIM R.: The projection
explorer: A flexible tool for projection-based multidimensional visual-
ization. Proc. IEEE SIBGRAPI (2007), 27–34. 4

[PV13] PAPADOPOULOS C., VOGLIS C.: Untangling graphs represent-
ing spatial relationships driven by drawing aesthetics. In Proc. ACM PCI
(2013), pp. 158–165. 5

[Raj] RAJAT: Rajat/rajat11 sparse matrix. https://www.cise.ufl.edu/
research/sparse/matrices/Rajat/rajat11.html. [accessed 30-06-2016]. 5

[RFT16] RAUBER P., FALCÃO A., TELEA A.: Visualizing time-
dependent data using dynamic t-SNE. Proc. EuroVis – Short papers
(2016). 8

[SVPM14] SORZANO C., VARGAS J., PASCUAL-MONTANO
A.: A survey of dimensionality reduction techniques, 2014.
arxiv.org/pdf/1403.2877. 2

[Tam13] TAMASSIA R.: Handbook of Graph Drawing and Visualization.
CRC Press, 2013. 2, 5

[TdSL00] TENENBAUM J. B., DE SILVA V., LANGFORD J. C.: Global
geometric frameworks for nonlinear dimensionality reduction. Science
290, 5500 (2000), 2319–2323. 2

[Tor52] TORGERSON W. S.: Multidimensional scaling: I. theory and
method. Psychometrica 17, 4 (1952), 401–419. 2

[vdM] VAN DER MAATEN L.: t-SNE: CUDA implementation.
lvdmaaten.github.io/tsne/code/tSNE_CUDA.zip. [accessed 15-11-2016].
6

[vdM14] VAN DER MAATEN L.: Accelerating t-SNE using Tree-Based
Algorithms. JMLR 15 (2014), 3221–3245. 6

[vdMH08] VAN DER MAATEN L. J. P., HINTON G. E.: Visualizing high-
dimensional data using t-SNE. JMLR 9 (2008), 2579–2605. 1, 2, 3, 8

[vdZCT16] VAN DER ZWAN M., CODREANU V., TELEA A. C.: CUBu:
Universal real-time bundling for large graphs. IEEE TVCG 22, 12
(2016), 2550–2563. 7

[VHBB02] VAN HEUKELUM A., BARKEMA G., BISSELING R.: DNA
electrophoresis studied with the cage model. J Comput Phys 180, 1
(2002), 313–326. 5

[vLKS∗11] VON LANDESBERGER T., KUIJPER A., SCHRECK T.,
KOHLHAMMER J., VAN WIJK J., FEKETE J.-D., FELLNER D.: Visual
analysis of large graphs: State-of-the-art and future research challenges.
CGF 30, 6 (2011), 1719–1749. 2

[Wal01] WALSHAW C.: A multilevel algorithm for force-directed graph
drawing. Graph Drawing 7, 3 (2001), 31–55. 2, 5, 7

[WS98] WATTS D. J., STROGATZ S. H.: Collective dynamics of small-
world networks. Nature 393, 6684 (1998), 440–442. 5

[WVJ16] WATTENBERG M., VIÉGAS F., JOHNSON I.: How to use t-
SNE effectively. Distill (2016). http://distill.pub/2016/misread-tsne. 8

[YPK14] YANG Z., PELTONEN J., KASKI S.: Optimization equivalence
of divergences improves neighbor embedding. In Proc. ICML (2014),
vol. 2, pp. 1808–1839. 3, 4

[Yus01] YUSUFOV R.: GRIP: Graph drawing with intelligent place-
ment. https://www.cs.arizona.edu/~kobourov/GRIP/, 2001. [accessed 18-
11-2016]. 4

submitted to Eurographics Conference on Visualization (EuroVis) (2017)

https://www.cise.ufl.edu/research/sparse/matrices/Rajat/rajat11.html
https://www.cise.ufl.edu/research/sparse/matrices/Rajat/rajat11.html
lvdmaaten.github.io/tsne/code/tSNE_CUDA.zip
https://www.cs.arizona.edu/~kobourov/GRIP/

