2,494 research outputs found

    The Lick Planet Search: Detectability and Mass Thresholds

    Get PDF
    We analyse 11 years of precise radial velocities for 76 solar type stars from the Lick survey. Eight stars in this sample have previously reported planetary-mass companions, all with mass (m sin i) less than 8 Jupiter masses (MJ). For the stars without a detected companion, we place upper limits on possible companion mass. For most stars, we can exclude companions with m sin i > 0.7 MJ (a/AU)^1/2 for orbital radii a < 5 AU. We use our results to interpret the observed masses and orbital radii of planetary-mass companions. For example, we show that the finite duration of the observations makes detection of Jupiter mass companions more and more difficult for orbital radii beyond 3 AU. Thus it is possible that the majority of solar type stars harbor Jupiter-mass companions much like our own, and if so these companions should be detectable in a few years. To search for periodicities, we adopt a "floating-mean" periodogram, which improves on the traditional Lomb-Scargle periodogram by accounting for statistical fluctuations in the mean of a sampled sinusoid. We discuss in detail the normalization of the periodogram, an issue which has been of some debate in the literature.Comment: To appear in the Astrophysical Journal (50 pages, LaTeX, including 11 figures

    Helium-rich thermonuclear bursts and the distance to the accretion-powered millisecond pulsar SAX J1808.4-3658

    Get PDF
    We analysed Rossi X-ray Timing Explorer observations of the accretion-powered 401 Hz pulsar SAX J1808.4-3658, in order to precisely determine the source distance. While the fluences for the five transient outbursts observed from 1996 were constant to within the uncertainties, the outburst interval varied signficantly, so that the time-averaged flux (and accretion rate) decreased by around 40%. By equating the time-averaged X-ray flux with the expected mass transfer rate from gravitational radiation, we derived a lower limit on the distance of 3.4 kpc. Combined with an upper limit from assuming that the four radius-expansion thermonuclear bursts observed during the 2002 October outburst reached at most the Eddington limit for a pure He atmosphere, we found that the probable distance range for the source is 3.4-3.6 kpc. The implied inclination, based on the optical/IR properties of the counterpart, is i<~30 degrees. We compared the properties of the bursts with an ignition model. The time between bursts was long enough for hot CNO burning to significantly deplete the accreted hydrogen, so that ignition occurred in a pure helium layer underlying a stable hydrogen burning shell. This is the first time that this burning regime has been securely observationally identified. The observed energetics of the bursts give a mean hydrogen fraction at ignition of approx. 0.1, and require that the accreted hydrogen fraction X_0 and the CNO metallicity Z_CNO are related by Z_CNO approx. 0.03(X_0/0.7)^2. We show that in this burning regime, a measurement of the burst recurrence time and energetics allows the local accretion rate onto the star to be determined independently of the accreted composition, giving a new method for estimating the source distance which is in good agreement with our other estimates.Comment: 10 pages, 6 figures, accepted by Ap

    Status Update of the Parkes Pulsar Timing Array

    Full text link
    The Parkes Pulsar Timing Array project aims to make a direct detection of a gravitational-wave background through timing of millisecond pulsars. In this article, the main requirements for that endeavour are described and recent and ongoing progress is outlined. We demonstrate that the timing properties of millisecond pulsars are adequate and that technological progress is timely to expect a successful detection of gravitational waves within a decade, or alternatively to rule out all current predictions for gravitational wave backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by Classical & Quantum Gravit

    Chandra Observations of Type Ia Supernovae: Upper Limits to the X-ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke

    Full text link
    We set sensitive upper limits to the X-ray emission of four Type Ia supernovae (SNe Ia) using the Chandra X-ray Observatory. SN 2002bo, a normal, although reddened, nearby SN Ia, was observed 9.3 days after explosion. For an absorbed, high temperature bremsstrahlung model the flux limits are 3.2E-16 ergs/cm^2/s (0.5-2 keV band) and 4.1E-15 ergs/cm^2/s (2-10 keV band). Using conservative model assumptions and a 10 km/s wind speed, we derive a mass loss rate of \dot{M} ~ 2E-5 M_\odot/yr, which is comparable to limits set by the non-detection of Halpha lines from other SNe Ia. Two other objects, SN 2002ic and SN 2005gj, observed 260 and 80 days after explosion, respectively, are the only SNe Ia showing evidence for circumstellar interaction. The SN 2002ic X-ray flux upper limits are ~4 times below predictions of the interaction model currently favored to explain the bright optical emission. To resolve this discrepancy we invoke the mixing of cool dense ejecta fragments into the forward shock region, which produces increased X-ray absorption. A modest amount of mixing allows us to accommodate the Chandra upper limit. SN 2005gj is less well studied at this time. Assuming the same circumstellar environment as for SN 2002i, the X-ray flux upper limits for SN 2005gj are ~4 times below the predictions, suggesting that mixing of cool ejecta into the forward shock has also occurred here. Our reanalysis of Swift and Chandra data on SN 2005ke does not confirm a previously reported X-ray detection. The host galaxies NGC 3190 (SN 2002bo) and NGC 1371 (SN 2005ke) each harbor a low luminosity (L_X ~ 3-4E40 ergs/s) active nucleus in addition to wide-spread diffuse soft X-ray emission.Comment: 16 pages, to appear in ApJ (20 Nov 2007

    Invited Article: CO_2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions

    Get PDF
    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance

    Circumstellar Na I and Ca II lines of type Ia supernovae in symbiotic scenario

    Full text link
    Formation of circumstellar lines of Na I and Ca II in type Ia supernovae is studied for the case, when supernova explodes in a binary system with a red giant. The model suggests a spherically-symmetric wind and takes into account ionization and heating of the wind by X-rays from the shock wave and by gamma-quanta of ^{56}Ni radioactive decay. For the wind density typical of the red giant the expected optical depth of the wind in Na I lines turnes out too low (\tau<0.001}) to detect the absorption. For the same wind densities the predicted optical depth of Ca II 3934 \AA is sufficient for the detection (\tau>0.1). I conclude that the absorption lines detected in SN 2006X cannot form in the red giant wind; they are rather related to clouds at distances larger than the dust evaporation radius (r>10^{17} cm). From the absence in SN 2006X of Ca II absorption lines not related with the similar Na I components I derive the upper limit of the mass loss rate by the wind with velocity u: \dot{M}<10^{-8}(u/10 km/s) M_{\odot} yr^{-1}.Comment: 10 pages, 6 figures, Astronomy Letters (accepted

    Forming the first planetary systems: debris around Galactic thick disc stars

    Get PDF
    The thick disc contains stars formed within the first Gyr of Galactic history, and little is known about their planetary systems. The Spitzer MIPS instrument was used to search 11 of the closest of these old low-metal stars for circumstellar debris, as a signpost that bodies at least as large as planetesimals were formed. A total of 22 thick disc stars has now been observed, after including archival data, but dust is not found in any of the systems. The data rule out a high incidence of debris among star systems from early in the Galaxy's formation. However, some stars of this very old population do host giant planets, at possibly more than the general incidence among low-metal Sun-like stars. As the Solar System contains gas giants but little cometary dust, the thick disc could host analogue systems that formed many Gyr before the Sun.Comment: accepted by MNRAS Letters; 5 pages, 4 figure

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
    • 

    corecore