283 research outputs found

    Physiologic and Symptomatic Responses to Low-Level Substances in Individuals with and without Chemical Sensitivities: A Randomized Controlled Blinded Pilot Booth Study

    Get PDF
    We conducted a pilot study using a randomized, single-blind, placebo-controlled exposure among 10 individuals with and 7 without reported chemical sensitivities in a dedicated testing chamber. Objectives of the study were to explore the length of the adaptation period to obtain stable readings, evaluate responses to different substances, and measure the level and type of symptomatic and physiologic reactions to low-level exposures. Reported and observed symptoms, electrodermal response, heart rate, skin temperature, surface electromyogram, respiratory rate, contrast sensitivity, and the Brown-Peterson cognitive test were used and compared between cases and controls and between test substances (glue, body wash solution, dryer sheet) and control substances (unscented shampoo and clean air). Subjects with chemical sensitivities (cases) took longer to adapt to baseline protocols than did controls. After adaptation, despite small study numbers, cases displayed statistically significant responses (all measures, p < 0.02) in tonic electrodermal response to test substances compared with controls and compared with the control substance. Symptoms were also higher in cases than in controls for the body wash solution (p = 0.05) and dryer sheets (p = 0.02). Test–retest showed good agreement for both symptoms and tonic electrodermal responses (McNemar’s test, p = 0.32 and p = 0.33, respectively). Outside of skin conductance, other measures had no consistent patterns between test and control substances and between cases and controls. This study shows the importance of using an adaptation period in testing individuals with reported chemical sensitivities and, despite small numbers, raises questions about underlying mechanisms and level of reactivity to low-level chemical exposures in sensitive individuals

    A new high: Cannabis as a budding source of carbon-based materials for electrochemical power sources

    Get PDF
    Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Pyoderma gangrenosum after totally implanted central venous access device insertion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyoderma gangrenosum is an aseptic skin disease. The ulcerative form of pyoderma gangrenosum is characterized by a rapidly progressing painful irregular and undermined bordered necrotic ulcer. The aetiology of pyoderma gangrenosum remains unclear. In about 70% of cases, it is associated with a systemic disorder, most often inflammatory bowel disease, haematological disease or arthritis. In 25–50% of cases, a triggering factor such as recent surgery or trauma is identified. Treatment consists of local and systemic approaches. Systemic steroids are generally used first. If the lesions are refractory, steroids are combined with other immunosuppressive therapy or to antimicrobial agents.</p> <p>Case presentation</p> <p>A 90 years old patient with myelodysplastic syndrome, seeking regular transfusions required totally implanted central venous access device (Port-a-Cath<sup>®</sup>) insertion. Fever and inflammatory skin reaction at the site of insertion developed on the seventh post-operative day, requiring the device's explanation. A rapid progression of the skin lesions evolved into a circular skin necrosis. Intravenous steroid treatment stopped the necrosis' progression.</p> <p>Conclusion</p> <p>Early diagnosis remains the most important step to the successful treatment of pyoderma gangrenosum.</p

    Is adenomyosis the neglected phenotype of an endomyometrial dysfunction syndrome?

    Get PDF
    Since the dissociation between adenomyoma and endometriosis in the 1920s and the laparoscopic progress in the diagnosis and surgery of endometriosis, the literature has been greatly focused on the disease endometriosis. The study of adenomyosis, on the other hand, has been neglected as the diagnosis remained based on hysterectomy specimens. However, since the introduction of magnetic resonance and sonographic imaging techniques in the 1980s, the myometrial junctional zone has been identified as a third uterine zone and interest in adenomyosis was renewed. This has also been the start for the interest in the role of the myometrial junctional zone dysfunction and adenomyosis in reproductive and obstetrical disorders

    Single crystal, luminescent carbon nitride nanosheets formed by spontaneous dissolution

    Get PDF
    A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices

    Impacto da exposição académica no estado de saúde de estudantes universitários

    Get PDF
    OBJECTIVE: To assess the impact of academic life on health status of university students. METHODS: Longitudinal study including 154 undergraduate students from the Universidade de Aveiro, Portugal, with at least two years of follow-up observations. Sociodemographic and behavioral characteristics were collected using questionnaires. Students' weight, height, blood pressure, serum glucose, serum lipids and serum homocysteine levels were measured. Regression analysis was performed using linear mixed-effect models, allowing for random effects at the participant level. RESULTS: A higher rate of dyslipidemia (44.0% vs. 28.6%), overweight (16.3% vs. 12.5%) and smoking (19.3% vs. 0.0%) was found among students exposed to the academic life when compared to freshmen. Physical inactivity was about 80%. Total cholesterol, high density lipoprotein-cholesterol (HDL-C), triglycerides, systolic blood pressure, and physical activity levels were significantly associated with gender (p<0.001). Academic exposure was associated with increased low density lipoprotein-cholesterol (LDL-C) levels (about 1.12 times), and marginally with total cholesterol levels (p=0.041). CONCLUSIONS: High education level does not seem to have a protective effect favoring a healthier lifestyle and being enrolled in health-related areas does not seem either to positively affect students' behaviors. Increased risk factors for non-transmissible diseases in university students raise concerns about their well-being. These results should support the implementation of health promotion and prevention programs at universities.OBJETIVO: Avaliar a influência da vida académica na saúde de estudantes universitários. MÉTODOS: Estudo longitudinal envolvendo 154 estudantes de graduação da Universidade de Aveiro, Portugal, por pelo menos dois anos de acompanhamento. Características sociodemográfi cas e comportamentais foram recordados, por meio de questionários. Foram medidos peso, altura,pressão arterial, glicemia, perfil lipídico e os níveis séricos de homocisteína dos alunos. Foi realizada análise de regressão com modelos lineares mistos considerando as medidas repetidas de cada sujeito. RESULTADOS: Estudantes expostos à vida académica, quando comparados àqueles de ingresso recente à universidade apresentaram proporção mais elevada de dislipidemia (44,0% versus 28,6%), sobrepeso (16,3% versus 12,5%) e tabagismo (19,3% versus 0,0%). No geral, foi observada alta proporção de sedentarismo (cerca de 80%). O colesterol total, lipoproteína de alta densidade, triglicérides, pressão arterial sistólica e níveis de atividade física apresentaram associação signifi cativa com o género (p < 0,001). A exposição académica apresentou-se associada com o aumento dos níveis das lipoproteínas de baixa densidade (cerca de 1,12 vezes), e marginalmente com os níveis de colesterol total (p = 0,041). CONCLUSÕES: Nem o alto nível de instrução parece ter papel protetor na adoção de estilo de vida saudável, tampouco o envolvimento com áreas de saúde muda o comportamento dos estudantes. Altas proporções de fatores de risco para doenças não-transmissíveis em jovens universitários podem afetar seu bem-estar. Os resultados podem servir de apoio às universidades no desenvolvimento de programas de prevenção e promoção da saúde

    MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression

    Get PDF
    Aims: This study aimed at evaluating the potential anti-proliferative effects of the microRNA let-7 family in nasopharyngeal carcinoma (NPC) cells. In addition, the association between let-7 suppression and DNA hypermethylation is examined. Materials and methods: Levels of mature let-7 family members (-a,-b,-d,-e,-g, and-i) in normal nasopharyngeal cells (NP69 and NP460) and nasopharyngeal carcinoma cells (HK1 and HONE1) were measured by real-time quantitative PCR. Cell-proliferation assay and c-Myc immunohistochemical staining were performed on NPC cells transfected with let-7 precursor molecules. In addition, expression changes in let-7 family members in response to demethylating agents (5-azacytidine and zebularine) were also examined. Results: In comparison with the normal nasopharyngeal cells, let-7 (-a,-b,-d,-e,-g, and-i) levels were reduced in nasopharyngeal carcinoma cells. Ectopic expression of the let-7 family in nasopharyngeal carcinoma cells resulted in inhibition of cell proliferation through downregulation of c-Myc expression. Demethylation treatment of nasopharyngeal carcinoma cells caused activation of let-7 expression in poorly differentiated nasopharyngeal carcinoma cells only. Conclusion: Our results suggested that miRNA let-7 might play a role in the proliferation of NPC. DNA methylation is a potential regulatory pathway, which is affected when let-7 is suppressed in NPC cells. However, the extent of DNA hypermethylation/hypomethylation in regulating let-7 expression requires further elucidation. © The Author(s) 2010. This article is published with open access at Springerlink.com.published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore