2,314 research outputs found

    Generalized Voxel Coloring

    Get PDF
    Image-based reconstruction from randomly scattered views is a challenging problem. We present a new algorithm that extends Seitz and Dyer’s Voxel Coloring algorithm. Unlike their algorithm, ours can use images from arbitrary camera locations. The key problem in this class of algorithms is that of identifying the images from which a voxel is visible. Unlike Kutulakos and Seitz’s Space Carving technique, our algorithm solves this problem exactly and the resulting reconstructions yield better results in our application, which is synthesizing new views. One variation of our algorithm minimizes color consistency comparisons; another uses less memory and can be accelerated with graphics hardware. We present efficiency measurements and, for comparison, we present images synthesized using our algorithm and Space Carving

    Volumetric Warping for Voxel Coloring on an Infinite Domain

    Get PDF
    Starting with a set of calibrated photographs taken of a scene, voxel coloring algorithms reconstruct three-dimensional surface models on a finite spatial domain. In this paper, we present a method that warps the voxel space, so that the domain of the reconstruction extends to an infinite or semi-infinite volume. Doing so enables the reconstruction of objects far away from the cameras, as well as reconstruction of a background environment. New views synthesized using the warped voxel space have improved photo-realism

    Methods for Volumetric Reconstruction of Visual Scenes

    Get PDF
    In this paper, we present methods for 3D volumetric reconstruction of visual scenes photographed by multiple calibrated cameras placed at arbitrary viewpoints. Our goal is to generate a 3D model that can be rendered to synthesize new photo-realistic views of the scene. We improve upon existing voxel coloring/space carving approaches by introducing new ways to compute visibility and photo-consistency, as well as model infinitely large scenes. In particular, we describe a visibility approach that uses all possible color information from the photographs during reconstruction, photo-consistency measures that are more robust and/or require less manual intervention, and a volumetric warping method for application of these reconstruction methods to large-scale scenes

    Characterization of one-dimensional quantum channels in InAs/AlSb

    Full text link
    We report the magnetoresistance characteristics of one-dimensional electrons confined in a single InAs quantum well sandwiched between AlSb barriers. As a result of a novel nanofabrication scheme that utilizes a 3nm-shallow wet chemical etching to define the electrostatic lateral confinement, the system is found to possess three important properties: specular boundary scattering, a strong lateral confinement potential, and a conducting channel width that is approximately the lithography width. Ballistic transport phenomena, including the quenching of the Hall resistance, the last Hall plateau, and a strong negative bend resistance, are observed at 4K in cross junctions with sharp corners. In a ring geometry, we have observed Aharonov-Bohm interference that exhibits characteristics different from those of the GaAs counterpart due to the ballistic nature of electron transport and the narrowness of the conducting channel width.Comment: pdf-file, 8 figures, to be published in Phys. Rev.

    A First Order Predicate Logic Formulation of the 3D Reconstruction Problem and its Solution Space

    Get PDF
    This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    An mRNA processing pathway suppresses metastasis by governing translational control from the nucleus

    Get PDF
    Cancer cells often co-opt post-transcriptional regulatory mechanisms to achieve pathologic expression of gene networks that drive metastasis. Translational control is a major regulatory hub in oncogenesis; however, its effects on cancer progression remain poorly understood. Here, to address this, we used ribosome profiling to compare genome-wide translation efficiencies of poorly and highly metastatic breast cancer cells and patient-derived xenografts. We developed dedicated regression-based methods to analyse ribosome profiling and alternative polyadenylation data, and identified heterogeneous nuclear ribonucleoprotein C (HNRNPC) as a translational controller of a specific mRNA regulon. We found that HNRNPC is downregulated in highly metastatic cells, which causes HNRNPC-bound mRNAs to undergo 3′ untranslated region lengthening and, subsequently, translational repression. We showed that modulating HNRNPC expression impacts the metastatic capacity of breast cancer cells in xenograft mouse models. In addition, the reduced expression of HNRNPC and its regulon is associated with the worse prognosis in breast cancer patient cohorts

    Exercise is medicine in rural health centers and federally qualified health centers

    Get PDF
    The American College of Sports Medicine in collaboration with the American Medical Association developed the the Exercise is Medicine (EIM) initiative to promote physical activity as a vital sign among health care providers. The purpose of the study is to inform initiative advocacy efforts among Rural Health Centers and Federally Qualified Health Centers. An interview guide was developed through literature review and expert feedback. Provider responses will be recorded via field notes which are coded to extract common themes. The qualitative data collected from these interviews will be used to examine healthcare provider knowledge and awareness of the initiative current behaviors related to patient physical activity, assessment, counseling, prescription, referral and follow-up and the likelihood of these providers using existing Exercise is Medicine (EIM)materials and resources in the future. Our findings and recommendations will be communicated back to the American College of Sports Medicine through the Exercise is Medicine (EIM) Community Health Committee
    • …
    corecore