201 research outputs found

    Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    Get PDF
    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70–100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93–99%) in particulates (> 0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560–13,000 mg/kg of As and 14–35% weight/weight of Fe. As/Fe ratios (2.5–20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000–100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater

    Uranium and Radon in Private Bedrock Well Water in Maine: Geospatial Analysis at Two Scales

    Get PDF
    In greater Augusta of central Maine, 53 out of 1093 (4.8%) private bedrock well water samples from 1534 km² contained [U] > 30 μg/L, the U.S. Environmental Protection Agency’s (EPA) Maximum Contaminant Level (MCL) for drinking water; and 226 out of 786 (29%) samples from 1135 km² showed [Rn] > 4,000 pCi/L (148 Bq/L), the U.S. EPA’s Alternative MCL. Groundwater pH, calcite dissolution and redox condition are factors controlling the distribution of groundwater U but not Rn due to their divergent chemical and hydrological properties. Groundwater U is associated with incompatible elements (S, As, Mo, F, and Cs) in water samples within granitic intrusions. Elevated [U] and [Rn] are located within 5–10 km distance of granitic intrusions but do not show correlations with metamorphism at intermediate scales (10⁰−10¹ km). This spatial association is confirmed by a high-density sampling (n = 331, 5–40 samples per km²) at local scales (≤10–1 km) and the statewide sampling (n = 5857, 1 sample per 16 km²) at regional scales (10²–103 km). Wells located within 5 km of granitic intrusions are at risk of containing high levels of [U] and [Rn]. Approximately 48 800–63 900 and 324 000 people in Maine are estimated at risk of exposure to U (> 30 μg/L) and Rn (> 4000 pCi/L) in well water, respectively

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    Financial Systems and Industrial Policy in Germany and Great Britain: The Limits of Convergence

    Full text link

    Search for Single-Top-Quark Production in p-pbar Collisions at sqrt(s)=1.8 TeV

    Full text link
    We search for standard model single-top-quark production in the W-gluon fusion and W* channels using 106 pb^-1 of data from p-pbar collisions at sqrt(s)=1.8 TeV collected with the Collider Detector at Fermilab. We set an upper limit at 95% C.L. on the combined W-gluon fusion and W* single-top cross section of 14 pb, roughly six times larger than the standard model prediction. Separate 95% C.L. upper limits in the W-gluon fusion and W* channels are also determined and are found to be 13 and 18 pb, respectively.Comment: 6 pages, 2 figures; submitted to Phys. Rev. Let

    Rheumatoid Scleritis

    No full text
    A 59-year-old black female with rheumatoid arthritis developed diffuse anterior scleritis with orbital and adnexal involvement. Computerized axial tomography (CAT) demonstrated the location and extent of the lesion. Biopsy of subconjunctival tissue revealed a rheumatoid nodule, characterized by granulomatous inflammation and fibrinoid necrosis. The patient improved rapidly on large doses of systemic corticosteroids. The relationship of scleritis to rheumatoid arthritis is discussed. The histopathologic features of rheumatoid scleritis, its appearance on the CAT scan, and the management of this disease are also presented
    corecore