355 research outputs found

    Electron energy loss and induced photon emission in photonic crystals

    Full text link
    The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained from the retarding force exerted on the electron by the induced electric field. The features of the energy loss spectra are shown to be related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice constants aa relative to the wavelength of the associated electron excitations λ\lambda, an effective medium theory can be used to describe the material; however, for a∼λa\sim\lambda the photonic band structure plays an important role. Special attention is paid to the frequency gap regions in the latter case.Comment: 12 pages, 7 figure

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    SHIFTING THE PARADIGM IN RADIATION SAFETY

    Get PDF
    The current radiation safety paradigm using the linear no-threshold (LNT) model is based on the premise that even the smallest amount of radiation may cause mutations increasing the risk of cancer. Autopsy studies have shown that the presence of cancer cells is not a decisive factor in the occurrence of clinical cancer. On the other hand, suppression of immune system more than doubles the cancer risk in organ transplant patients, indicating its key role in keeping occult cancers in check. Low dose radiation (LDR) elevates immune response, and so it may reduce rather than increase the risk of cancer. LNT model pays exclusive attention to DNA damage, which is not a decisive factor, and completely ignores immune system response, which is an important factor, and so is not scientifically justifiable. By not recognizing the importance of the immune system in cancer, and not exploring exercise intervention, the current paradigm may have missed an opportunity to reduce cancer deaths among atomic bomb survivors. Increased antioxidants from LDR may reduce aging-related non-cancer diseases since oxidative damage is implicated in these. A paradigm shift is warranted to reduce further casualties, reduce fear of LDR, and enable investigation of potential beneficial applications of LDR

    Phase diffusion as a model for coherent suppression of tunneling in the presence of noise

    Get PDF
    We study the stabilization of coherent suppression of tunneling in a driven double-well system subject to random periodic δ−\delta-function ``kicks''. We model dissipation due to this stochastic process as a phase diffusion process for an effective two-level system and derive a corresponding set of Bloch equations with phase damping terms that agree with the periodically kicked system at discrete times. We demonstrate that the ability of noise to localize the system on either side of the double-well potenital arises from overdamping of the phase of oscillation and not from any cooperative effect between the noise and the driving field. The model is investigated with a square wave drive, which has qualitatively similar features to the widely studied cosinusoidal drive, but has the additional advantage of allowing one to derive exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.

    Copy Number Variants in Extended Autism Spectrum Disorder Families Reveal Candidates Potentially Involved in Autism Risk

    Get PDF
    Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology

    Statistical Theory of Spin Relaxation and Diffusion in Solids

    Full text link
    A comprehensive theoretical description is given for the spin relaxation and diffusion in solids. The formulation is made in a general statistical-mechanical way. The method of the nonequilibrium statistical operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation dynamics of a spin subsystem. Perturbation of this subsystem in solids may produce a nonequilibrium state which is then relaxed to an equilibrium state due to the interaction between the particles or with a thermal bath (lattice). The generalized kinetic equations were derived previously for a system weakly coupled to a thermal bath to elucidate the nature of transport and relaxation processes. In this paper, these results are used to describe the relaxation and diffusion of nuclear spins in solids. The aim is to formulate a successive and coherent microscopic description of the nuclear magnetic relaxation and diffusion in solids. The nuclear spin-lattice relaxation is considered and the Gorter relation is derived. As an example, a theory of spin diffusion of the nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown that due to the dipolar interaction between host nuclear spins and impurity spins, a nonuniform distribution in the host nuclear spin system will occur and consequently the macroscopic relaxation time will be strongly determined by the spin diffusion. The explicit expressions for the relaxation time in certain physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference

    Perturbations of Noise: The origins of Isothermal Flows

    Full text link
    We make a detailed analysis of both phenomenological and analytic background for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634). A corresponding theory of the isothermal Brownian motion of particle ensembles (Smoluchowski diffusion process approximation), gives account of the environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we elevate the individually negligible phenomena to a non-negligible (accumulated) recoil effect on the ensemble average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural substitute for the local momentum conservation law. Together with the continuity equation (alternatively, Fokker-Planck), it forms a closed system of partial differential equations which uniquely determines an associated Markovian diffusion process. The third Newton law in the mean is utilised to generate diffusion-type processes which are either anomalous (enhanced), or generically non-dispersive.Comment: Latex fil

    Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    Get PDF
    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role

    Skill Variety, Innovation and New Business Formation

    Full text link
    We extend Lazear's theory of skills variety and entrepreneurship in three directions. First, we provide a theoretical framework linking new business creation with an entrepreneur's skill variety. Second, in this model we allow for both generalists and specialists to possess skill variety. Third, we test our model empirically using data from Germany and the Netherlands. Individuals with more varied work experience seems indeed more likely to successfully start up a new business and that being a generalist does not seem to be important in this regard. Finally, we find that innovation positively moderates the relationship between having varied experiences, and being successful in starting up a new business. Our conclusion is that entrepreneurs with more varied work experience are more likely to introduce innovations that have not only technical, but also commercial value. Our findings support the notion that entrepreneurship can be learned

    Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis

    Get PDF
    Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions
    • …
    corecore