214 research outputs found

    Treatment of Dilated Cardiomyopathy with Qilan Qiangxin Capsule Combined with Sakubatra and Valsartan: A Case Report

    Get PDF
    A case of dilated cardiomyopathy was reported, including the course of onset and long-term application of Qilan Qiangxin Capsule combined with a new anti-heart failure drug, Sakubatril Valsartan, in order to improve the symptoms of heart failure, increase the LVEF (left ventricular ejection fraction), and reduce the plasma NT-proBNP (N-terminal B-type natriuretic peptide) level. The effect of improving ventricular remodeling is obvious, and the quality of life of patients is improve

    Cell surface-specific N-glycan profiling in breast cancer

    Get PDF
    Aberrant changes in specific glycans have been shown to be associated with immunosurveillance, tumorigenesis, tumor progression and metastasis. In this study, the N-glycan profiling of membrane proteins from human breast cancer cell lines and tissues was detected using modified DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan profiles of membrane proteins were analyzed from 7 breast cancer cell lines and MCF 10A, as well as from 100 pairs of breast cancer and corresponding adjacent tissues. The results showed that, compared with the matched adjacent normal tissue samples, two biantennary N-glycans (NA2 and NA2FB) were significantly decreased (p <0.0001) in the breast cancer tissue samples, while the triantennary glycan (NA3FB) and a high-mannose glycan (M8) were dramatically increased (p = 0.001 and p <0.0001, respectively). Moreover, the alterations in these specific N-glycans occurred through the oncogenesis and progression of breast cancer. These results suggested that the modified method based on DSA-FACE is a high-throughput detection technology that is suited for analyzing cell surface N-glycans. These cell surface-specific N-glycans may be helpful in recognizing the mechanisms of tumor cell immunologic escape and could be potential targets for new breast cancer drugs

    Effects of Pressure and Doping on Ruddlesden-Popper phases Lan+1NinO3n+1

    Full text link
    Recently the discovery of superconductivity with a critical temperature Tc up to 80 K in Ruddlesden-Popper phases Lan+1NinO3n+1 (n = 2) under pressure has garnered considerable attention. Up to now, the superconductivity was only observed in La3Ni2O7 single crystal grown with the optical-image floating zone furnace under oxygen pressure. It remains to be understood the effect of chemical doping on superconducting La3Ni2O7 as well as other Ruddlesden-Popper phases. Here, we systematically investigate the effect of external pressure and chemical doping on polycrystalline Ruddlesden-Popper phases. Our results demonstrate the application of pressure and doping effectively tunes the transport properties of Ruddlesden-Popper phases. We find pressure-induced superconductivity up to 86 K in La3Ni2O7 polycrystalline sample, while no signatures of superconductivity are observed in La2NiO4 and La4Ni3O10 systems under high pressure up to 50 GPa. Our study sheds light on the exploration of high-Tc superconductivity in nickelates.Comment: 21 papes, 8 figures and 1 tabl

    Effect of physical and chemical pressure on the superconductivity of caged-type quasiskutterudite Lu5Rh6Sn18

    Full text link
    Lu5Rh6Sn18 is one of the caged-type quasiskutterudite superconductors with superconducting transition temperature Tc = 4.12 K. Here, we investigate the effect of pressure on the superconductivity in Lu5Rh6Sn18 by combining high pressure electrical transport, synchrotron x-ray diffraction (XRD) and chemical doping. Application of high pressure can enhance both the metallicity and the superconducting transition temperature in Lu5Rh6Sn18. Tc is found to show a continuous increase reaching up to 5.50 K at 11.4 GPa. Our high pressure synchrotron XRD measurements demonstrate the stability of the pristine crystal structure up to 12.0 GPa. In contrast, Tc is suppressed after the substitution of La ions in Lu sites, inducing negative chemical pressure. Our study provides valuable insights into the improvement of superconductivity in caged compounds.Comment: 9 pages, 8 figure

    Pressure-induced Superconductivity and Structure Phase Transition in SnAs-based Zintl Compound SrSn2As2

    Full text link
    Layered SnAs-based Zintl compounds exhibit a distinctive electronic structure, igniting extensive research efforts in areas of superconductivity, topological insulators and quantum magnetism. In this paper, we systematically investigate the crystal structures and electronic properties of the Zintl compound SrSn2As2 under high-pressure. At approximately 20.8 GPa, pressure-induced superconductivity is observed in SrSn2As2 with a characteristic dome-like evolution of Tc. Theoretical calculations together with high pressure synchrotron X-ray diffraction and Raman spectroscopy have identified that SrSn2As2 undergoes a structural transformation from a trigonal to a monoclinic structure. Beyond 28.3 GPa, the superconducting transition temperature is suppressed due to a reduction of the density of state at the Fermi level. The discovery of pressure-induced superconductivity, accompanied by structural transitions in SrSn2As2, greatly expands the physical properties of layered SnAs-based compounds and provides a new ground states upon compression.Comment: 15 pages, 6 figures. arXiv admin note: text overlap with arXiv:2307.1562

    miR-24 is involved in vertebrate LC-PUFA biosynthesis as demonstrated in marine teleost Siganus canaliculatus

    Get PDF
    Recently, microRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism. However, the miRNA-mediated regulatory mechanism on long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in vertebrates remains largely unknown. Here, we address a potentially important role of miRNA-24 (miR-24) in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. miR-24 showed significantly higher abundance in liver of rabbitfish reared in brackish water than in seawater for fish fed vegetable oil diets and in S. canaliculatus hepatocyte line (SCHL) cells incubated with alpha-linolenic acid (ALA) than the control group. Similar expression patterns were also observed on the expression of sterol regulatory element-binding protein-1 (srebp1) and LC-PUFA biosynthesis related genes. While opposite results were observed on the expression of insulin-induced gene 1 (insig1), an endoplasmic reticulum membrane protein blocking Srebp1 proteolytic activation. Luciferase reporter assays revealed rabbitfish insig1 as a target of miR-24. Knockdown of miR-24 in SCHL cells resulted in increased Insig1 protein, and subsequently reduced mature Srebp1 protein and expression of genes required for LC-PUFA biosynthesis, and these effects could be attenuated after additional insig1 knockdown. Opposite results were observed with overexpression of miR-24. Moreover, increasing endogenous insig1 by knockdown of miR-24 inhibited Srebp1 processing and consequently suppressed LC-PUFA biosynthesis in rabbitfish hepatocytes. These results indicate a potentially critical role for miR-24 in regulating LC-PUFA biosynthesis through the Insig1/Srebp1 pathway by targeting insig1. This is the first report of miR-24 involved in LC-PUFA biosynthesis and thus may provide knowledge on the regulatory mechanisms of LC-PUFA biosynthesis in vertebrates

    Pressure-induced Superconductivity in Zintl Topological Insulator SrIn2As2

    Full text link
    The Zintl compound AIn2X2 (A = Ca, Sr, and X = P, As), as a theoretically predicted new non-magnetic topological insulator, requires experiments to understand their electronic structure and topological characteristics. In this paper, we systematically investigate the crystal structures and electronic properties of the Zintl compound SrIn2As2 under both ambient and high-pressure conditions. Based on systematic angle-resolved photoemission spectroscopy (ARPES) measurements, we observed the topological surface states on its (001) surface as predicted by calculations, indicating that SrIn2As2 is a strong topological insulator. Interestingly, application of pressure effectively tuned the crystal structure and electronic properties of SrIn2As2. Superconductivity is observed in SrIn2As2 for pressure where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a metal. The observation of nontrivial topological states and pressure-induced superconductivity in SrIn2As2 provides crucial insights into the relationship between topology and superconductivity, as well as stimulates further studies of superconductivity in topological materials.Comment: 15 pages,5 figure

    Pressure induced superconductivity in WB2 and ReB2 through modifying the B layers

    Full text link
    The recent discovery of superconductivity up to 32 K in the pressurized MoB2 reignites the interests in exploring high-Tc superconductors in transition-metal diborides. Inspired by that work, we turn our attention to the 5d transition-metal diborides. Here we systematically investigate the responses of both structural and physical properties of WB2 and ReB2 to external pressure, which possess different types of boron layers. Similar to MoB2, the pressure-induced superconductivity was also observed in WB2 above 60 GPa with a maximum Tc of 15 K at 100 GPa, while no superconductivity was detected in ReB2 in this pressure range. Interestingly, the structures at ambient pressure for both WB2 and ReB2 persist to high pressure without structural phase transitions. Theoretical calculations suggest that the ratio of flat boron layers in this class of transition-metal diborides may be crucial for the appearance of high Tc. The combined theoretical and experimental results highlight the effect of geometry of boron layers on superconductivity and shed light on the exploration of novel high-Tc superconductors in borides.Comment: 17 pages,5 figure
    • …
    corecore