5 research outputs found

    Measuring the <i>p</i>th-Order Correlation Function of Light Field via Two-Level Atoms

    No full text
    In this paper, we present a method for measuring arbitrary-order correlation functions of the light field using a two-level atomic system. Theoretically, light field information should be mapped onto the atomic system after the light interacts with the atom. Therefore, we can measure the atomic system and thus obtain information about the light field. We study two typical models, the p-photon Jaynes–Cummings model, and the p-photon Tavis–Cummings model. In both models, we find that the pth-order correlation function of an unknown light field can be obtained by measuring the instantaneous change of energy of the two-level atoms with the aid of a known reference light field. Moreover, we find that the interactions other than the dipole interactions between light and atoms have no effect on the measurement results

    Berry Phase of Two Impurity Qubits as a Signature of Dicke Quantum Phase Transition

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the Berry phase of the two impurity qubits. The two impurity qubits only have dispersive interactions with the optical field of the Dicke quantum system. Therefore, the two impurity qubits do not affect the ground state energy of the Dicke Hamiltonian. We find that the Berry phase of the two impurity qubits has a sudden change at the Dicke quantum phase transition point. Therefore, the Berry phase of the two impurity qubits can be used as a phase transition signal for the Dicke quantum phase transition. In addition, the two impurity qubits change differently near the phase transition point at different times. We explain the reason for the different variations by studying the variation of the Berry phase of the two impurity qubits with the phase transition parameters and time. Finally, we investigated the variation of the Berry phases of the two impurity qubits with their initial conditions, and we found that their Berry phases also have abrupt changes with the initial conditions. Since the Dicke quantum phase transition is already experimentally executable, the research in this paper helps to provide a means for manipulating the Berry phase of the two impurity qubits

    Berry Phase of Two Impurity Qubits as a Signature of Dicke Quantum Phase Transition

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the Berry phase of the two impurity qubits. The two impurity qubits only have dispersive interactions with the optical field of the Dicke quantum system. Therefore, the two impurity qubits do not affect the ground state energy of the Dicke Hamiltonian. We find that the Berry phase of the two impurity qubits has a sudden change at the Dicke quantum phase transition point. Therefore, the Berry phase of the two impurity qubits can be used as a phase transition signal for the Dicke quantum phase transition. In addition, the two impurity qubits change differently near the phase transition point at different times. We explain the reason for the different variations by studying the variation of the Berry phase of the two impurity qubits with the phase transition parameters and time. Finally, we investigated the variation of the Berry phases of the two impurity qubits with their initial conditions, and we found that their Berry phases also have abrupt changes with the initial conditions. Since the Dicke quantum phase transition is already experimentally executable, the research in this paper helps to provide a means for manipulating the Berry phase of the two impurity qubits

    Quantum Speed-Up Induced by the Quantum Phase Transition in a Nonlinear Dicke Model with Two Impurity Qubits

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the speed of evolution of the system dynamics. At the phase transition point, the symmetry associated with the system parity operator begins to break down. By comparing the magnitudes of the two types of quantum speed limit times, we find that the quantum speed limit time of the system is described by one of the quantum speed limit times, whether in the normal or superradiant phase. We find that, in the normal phase, the strength of the coupling between the optical field and the atoms has little effect on the dynamical evolution speed of the system. However, in the superradiant phase, a stronger atom–photon coupling strength can accelerate the system dynamics’ evolution. Finally, we investigate the effect of the entanglement of the initial state of the system on the speed of evolution of the system dynamics. We find that in the normal phase, the entanglement of the initial state of the system has almost no effect on the system dynamics’ evolution speed. However, in the superradiant phase, larger entanglement of the system can accelerate the evolution of the system dynamics. Furthermore, we verify the above conclusions by the actual evolution of the system
    corecore