1,264 research outputs found

    A computational study of photoisomerization in Al3O3- ­clusters

    Get PDF
    Ab initio calculations are employed to understand the photoisomerization process in small Al3O3- clusters. This process is the first example of a photoinduced isomerization observed in an anion cluster gas-phase system. Potential energy surfaces for the ground state and the excited state (S1 and T1) are explored by means of B3LYP, MP2, CI-singles, and CASSCF methods. We demonstrate that the isomerization process occurs between the global minimum singlet state Book structure (C2v,1A1) and the triplet state Ring structure (C2v,3B2). The calculated vertical excitation energy is 3.62 eV at the CASSCF level of approximation, in good agreement with the experimental value (3.49 eV). A nonplanar conical intersection, which hosts the intersystem crossing between the S1 and T1 surfaces is identified at the region of around R(1,6)=2.4 Ã…. Beyond the experimental results, we predict, that this isomerization is reversible upon absorption of a phonon with energy of 1.92 eV. Our results describe a unique system, whose structure depends on its spin multiplicity; it exists as the Book structure on singlet states and as the Ring structure on triplet states

    Optimal Siting of Electric Vehicle Charging Stations Using Pythagorean Fuzzy VIKOR Approach

    Get PDF
    Site selection for electric vehicle charging stations (EVCSs) is the process of determining the most suitable location among alternatives for the construction of charging facilities for electric vehicles. It can be regarded as a complex multicriteria decision-making (MCDM) problem requiring consideration of multiple conflicting criteria. In the real world, it is often hard or impossible for decision makers to estimate their preferences with exact numerical values. Therefore, Pythagorean fuzzy set theory has been frequently used to handle imprecise data and vague expressions in practical decision-making problems. In this paper, a Pythagorean fuzzy VIKOR (PF-VIKOR) approach is developed for solving the EVCS site selection problems, in which the evaluations of alternatives are given as linguistic terms characterized by Pythagorean fuzzy values (PFVs). Particularly, the generalized Pythagorean fuzzy ordered weighted standardized distance (GPFOWSD) operator is proposed to calculate the utility and regret measures for ranking alternative sites. Finally, a practical example in Shanghai, China, is included to demonstrate the proposed EVCS sitting model, and the advantages are highlighted by comparing the results with other relevant methods.Peer Reviewe

    Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes

    Get PDF
    Laboratory experiments were carried out on the kinetics and pathways of the electrochemical (EC) degradation of phenol at three different types of anodes, Ti/SnO2-Sb, Ti/RuO2, and Pt. Although phenol was oxidised by all of the anodes at a current density of 20 mA/cm2 or a cell voltage of 4.6 V, there was a considerable difference between the three anode types in the effectiveness and performance of EC organic degradation. Phenol was readily mineralized at the Ti/SnO2-Sb anode, but its degradation was much slower at the Ti/RuO2 and Pt anodes. The analytical results of high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC/MS) indicated that the intermediate products of EC phenol degradation, including benzoquinone and organic acids, were subsequently oxidised rapidly by the Ti/SnO2-Sb anode, but accumulated in the cells of Ti/RuO2 and Pt. There was also a formation of dark-coloured polymeric compounds and precipitates in the solutions electrolyzed by the Ti/RuO2 and Pt anodes, which was not observed for the Ti/SnO 2-Sb cells. It is argued that anodic property not only affects the reaction kinetics of various steps of EC organic oxidation, but also alters the pathway of phenol electrolysis. Favourable surface treatment, such as the SnO2-Sb coating, provides the anode with an apparent catalytic function for rapid organic oxidation that is probably brought about by hydroxyl radicals generated from anodic water electrolysis. © 2005 Elsevier Ltd. All rights reserved.postprin

    Haemodynamic changes in visceral hybrid repairs of type III and type V thoracoabdominal aortic aneurysms

    Get PDF
    The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs. Two patients, one with a type III and the other with a type V TAAA, underwent successful elective and emergency visceral hybrid repairs, respectively. Flow patterns and haemodynamic parameters were analysed using reconstructed pre- and post-operative CT scans. Both type III and type V TAAAs showed highly disturbed flow patterns with varying helicity values preoperatively within their respective aneurysms. Low time-averaged wall shear stress (TAWSS) and high endothelial cell action potential (ECAP) and relative residence time (RRT) associated with thrombogenic susceptibility was observed in the posterior aspect of both TAAAs preoperatively. Despite differing bypass configurations in the elective and emergency repairs, both treatment options appear to improve haemodynamic performance compared to preoperative study. However, we observed reduced TAWSS in the right iliac artery (portending a theoretical risk of future graft and possibly limb thrombosis), after the elective type III visceral hybrid repair, but not the emergency type V repair. We surmise that this difference may be attributed to the higher neo-bifurcation of the aortic stent graft in the type III as compared to the type V repair. Our results demonstrate that CFD can be used in complicated visceral hybrid repair to yield potentially actionable predictive insights with implications on surveillance and enhanced post-operative management, even in patients with complicated geometrical bypass configurations

    Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: A trend study from first principles

    Full text link
    Structural stability and hydrogen adsorption capacity are two key quantities in evaluating the potential of metal-adatom decorated graphene for hydrogen storage and related devices. We have carried out extensive density functional theory calculations for the adsorption of hydrogen molecules on 12 different adatom (Ag, Au, Ca, Li, Mg, Pd, Pt, Sc, Sr, Ti, Y, and Zr) decorated graphene surfaces where the adatoms are found to be stabilized on double carbon vacancies, thus overcoming the "clustering problem" that occurs for adatoms on pristine graphene. Ca and Sr are predicted to bind the greatest number, namely six, of H2 molecules. We find an interesting correlation between the hydrogen capacity and the change of charge distribution with increasing H2 adsorption, where Ca, Li, Mg, Sc, Ti, Y, Sr, and Zr adatoms are partial electron donors and Ag, Au, Pd, and Pt are partial electron acceptors. The "18-electron rule" for predicting maximum hydrogen capacity is found not to be a reliable indicator for these systems. © 2013 American Physical Society

    Direct observation of local K variation and its correlation to electronic inhomogeneity in (Ba1-xKx)Fe2As2 Pnictide

    Get PDF
    Local fluctuations in the distribution of dopant atoms are a suspected cause of nanoscale electronic disorder or phase separation observed within the pnictide superconductors. Atom probe tomography results present the first direct observations of dopant nano-clustering in a K-doped 122-phase pnictides. First-principles calculations suggest the coexistence of static magnetism and superconductivity on a lattice parameter length scale over a large range of doping concentrations. Collectively, our results provide evidence for a mixed scenario of phase coexistence and phase separation originating from variation of dopant atom experiments distroibutions.Comment: 4 pages, 4 figures and 1 table, accepted by Physical Review Letter 201

    A nexus between 3D atomistic data hybrids derived from atom probe microscopy and computational materials science: a new analysis of solute clustering in Al-alloys

    Get PDF
    Solute clusters affect the physical properties of alloys. Knowledge of the atomic structure of solute clusters is a prerequisite for material optimisation. In this study, solute clusters in a rapid-hardening Al-Cu-Mg alloy were characterised by a combination of atom probe tomography and density functional theory, making use of a hybrid data type that combines lattice rectification and data completion to directly input experimental data into atomistic simulations. The clusters input to the atomistic simulations are thus observed experimentally, reducing the number of possible configurations. Our results show that spheroidal, compact clusters are more energetically favourable and more abundant

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n≥13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321…\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n≥6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(5−5)/2=2.1755…\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n≥6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table
    • …
    corecore