753 research outputs found

    Intervenciones de enfermería en salud familiar en familias con ancianos con Alzheimer: revisión integrativa

    Get PDF
    Objective: To identify the scientific evidence of nursing interventions in family health in families with older adults with Alzheimer's. Method: Integrative review in PUBMED, Scopus, Web of Science, Virtual Health Library (VHL), Springer Links and ScienceDirect databases, using the health sciences descriptors (DECS): Family Health, Aged, Alzheimer, Family Nursing and Controlled Before-After Studies; the Boolean operator AND was used to join the descriptors. Results: Five articles were found that addressed nursing interventions focused on the primary caregiver and nursing interventions focused on the family. Main results: Five articles were found within which nursing interventions focused on the main caregiver and nursing interventions focused on the family are addressed. Overall conclusion: Family health interventions may be directed toward the primary caregiver or the entire family and will likewise have some indirect effect on the elderly person with Alzheimer's disease.Objetivo: Identificar la evidencia científica de las intervenciones de enfermería en salud familiar en familias con adultos mayores con Alzheimer. Método: Revisión de tipo integrativa en las bases de datos de PubMed, Scopus, Web of Science, biblioteca virtual en salud (BVS), SpringerLinks y ScienceDirect utilizando los descriptores de ciencias de la salud (DECS): Salud familiar (Family Health); Anciano (Aged); Alzheimer (Alzheimer), Enfermería familiar (Family Nursing) y estudios controlados antes y después (Controlled Before-After Studies); se utilizó el operador booleano AND para unir los descriptores. Resultados principales: Se encontraron 5 artículos dentro de los cuales se abordan Intervenciones de enfermería enfocadas al cuidador principal e intervenciones de enfermería enfocadas a la familia. Conclusión principal: Las intervenciones en salud familiar pueden ir orientadas hacia el cuidador primario o toda la familia e igualmente tendrá algún tipo de efecto indirecto sobre el anciano con Alzheimer

    Sistema web implementando técnicas predictivas con machine learning para la mejora del marketing digital en la empresa Data Services 2023

    Get PDF
    En el presente, las organizaciones utilizan el marketing digital para expandir y ampliar su mercado objetivo con el propósito de incrementar sus ventas además de generar mayores ingresos. La finalidad de esta investigación fue determinar en qué medida el sistema web con técnicas predictivas influye en la mejora del marketing digital en la empresa Data Services en 2023. Los indicadores empleados fueron coste por click, índice de clicks y puntuación neta del promotor. Este estudio fue de tipo aplicada y de nivel explicativo, en cuanto al diseño este fue preexperimental; para la recolección de datos respectivo se utilizó la ficha de registro. Los hallazgos tuvieron como resultado una disminución del 29.44% en el post test en relación al coste por click, por otro lado, en relación al índice de clicks hubo un aumento del 29.44% en el post test y correspondiente a la puntuación neta del promotor hubo un incremento muy significativo. En conclusión, se cumplieron los objetivos al determinar el impacto de los indicadores en el sistema web

    Synthesis and Evaluation of 177Lu-DOTA-DN(PTX)-BN for Selective and Concomitant Radio and Drug—Therapeutic E ect on Breast Cancer Cells

    Get PDF
    The peptide-receptor radionuclide therapy (PRRT) is a successful approach for selectively delivering radiation within tumor sites through specific recognition of radiolabeled peptides by overexpressed receptors on cancer cell surfaces. The e cacy of PRRT could be improved by using polymeric radio- and drug- therapy nanoparticles for a concomitant therapeutic e ect on malignant cells. This research aimed to prepare and evaluate, a novel drug and radiation delivery nanosystem based on the 177Lu-labeled polyamidoamine (PAMAM) dendrimer (DN) loaded with paclitaxel (PTX) and functionalized on the surface with the Lys1Lys3(DOTA)-bombesin (BN) peptide for specific targeting to gastrin-releasing peptide receptors (GRPr) overexpressed on breast cancer cells. DN was first conjugated covalently to BN and DOTA (chemical moiety for lutetium-177 complexing) and subsequently loaded with PTX. The characterization by microscopic and spectroscopic techniques, in-vitro drug delivery tests as well as in in-vitro and in-vivo cellular uptake of 177Lu-DOTA-DN(PTX)-BN by T47D breast cancer cells (GRPr-positive), indicated the formation of an improved delivery nanosystem with target-specific recognition by GRPr. Results of the 177Lu-DOTA-DN(PTX)-BN e ect on T47D cell viability (1.3%, compared with 10.9% of 177Lu-DOTA-DN-BN and 14.0% of DOTA-DN-(PTX)-BN) demonstrated the concomitant radiotherapeutic and chemotherapeutic properties of the polymeric nanosystem as a potential agent for the treatment of GRPr-positive tumors.This study was supported by the grant CONACyT-CB-A1S38087 and the International Atomic Energy Agency (CRP-F2264). It was performed as part of the activities of the “Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, CONACyT”

    Comparison of observed and modeled cloud-free longwave downward radiation (2010–2016) at the high mountain BSRN Izaña station

    Get PDF
    A 7-year (2010–2016) comparison study between measured and simulated longwave downward radiation (LDR) under cloud-free conditions was performed at the Izaña Atmospheric Observatory (IZO, Spain). This analysis encompasses a total of 2062 cases distributed approximately evenly between day and night. Results show an excellent agreement between Baseline Surface Radiation Network (BSRN) measurements and simulations with libRadtran V2.0.1 and MODerate resolution atmospheric TRANsmission model (MODTRAN) V6 radiative transfer models (RTMs). Mean bias (simulated - measured) of 10 mm, the observed night-time difference between models and measurements is +5Wm-2 indicating a scale change of the World Infrared Standard Group of Pyrgeometers (WISG), which serves as reference for atmospheric longwave radiation measurements. Preliminary results suggest a possible impact of dust aerosol on infrared radiation during daytime that might not be correctly parametrized by the models, resulting in a slight underestimation of the modeled LDR, of about -3Wm-2, for relatively high aerosol optical depth (AOD>0.20).AERONET Sun photometers at Izaña have been calibrated within the AERONET Europe TNA, supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654109 (ACTRIS-2). This research has benefited from the result of the project INMENSE (funded by the Ministerio de Economía y Competividad from Spain, CGL2016-8068

    Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements

    Get PDF
    A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from three Global Atmosphere Watch precision-filter radiometers (GAW-PFR), traceable to the World AOD reference, and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel), calibrated individually with the Langley plot technique, was performed for four common or “near” wavelengths, 380, 440, 500 and 870 nm, in the period 2005–2015. The goal of this study is to assess whether, despite the marked technical differences between both networks (AERONET, GAW-PFR) and the number of instruments used, their long-term AOD data are comparable and consistent. The percentage of data meeting the World Meteorological Organization (WMO) traceability requirements (95 % of the AOD differences of an instrument compared to the WMO standards lie within specific limits) is >92 % at 380 nm, >95 % at 440 nm and 500 nm, and 98 % at 870 nm, with the results being quite similar for both AERONET version 2 (V2) and version 3 (V3). For the data outside these limits, the contribution of calibration and differences in the calculation of the optical depth contribution due to Rayleigh scattering and O3 and NO2absorption have a negligible impact. For AOD >0.1, a small but non-negligible percentage (∼1.9 %) of the AOD data outside the WMO limits at 380 nm can be partly assigned to the impact of dust aerosol forward scattering on the AOD calculation due to the different field of view of the instruments. Due to this effect the GAW-PFR provides AOD values, which are ∼3 % lower at 380 nm and ∼2 % lower at 500 nm compared with AERONET-Cimel. The comparison of the Ångström exponent (AE) shows that under non-pristine conditions (AOD >0.03 and AE <1) the AE differences remain <0.1. This long-term comparison shows an excellent traceability of AERONET-Cimel AOD with the World AOD reference at 440, 500 and 870 nm channels and a fairly good agreement at 380 nm, although AOD should be improved in the UV range.The Federal Office of Meteorology and Climatology MeteoSwiss International Affairs Division, Swiss GCOS Office, has funded the project “The Global Atmosphere Watch Precision Filter Radiometer (GAW-PFR) Network for Aerosol Optical Depth long term measurements”, and specifically the GAW-PFR program at the Izaña Observatory. AEMET has funded the AERONET programme at the Izaña Observatory. Some of the AERONET-Cimel radiometers have been calibrated at Izaña Observatory by the AERONET Europe Calibration Service, financed by specific European Community programmes for integrating activities: Research Infrastructure Action under the Seventh Framework Programme (grant no. FP7/2007-2013) and ACTRIS (grant no. 45 262254). This research has received funding from the European Union's Horizon 2020 Research and Innovation Programme (grant no. 654109) (ACTRIS-2). Funding from MINECO (grant no. CTM2015-66742-R) and Junta de Castilla y León (grant no. VA100P17) is also gratefully acknowledged. Much of this study has been performed in the frame of the WMO CIMO Izaña test bed for aerosols and water vapour remote-sensing instruments funded by AEMET

    Aerosol Optical Depth comparison between GAW-PFR and AERONET-Cimel radiometers from long term (2005–2015) 1-minute synchronous measurements [Discussion paper]

    Get PDF
    A comprehensive comparison of more than 70000 synchronous 1-minute aerosol optical depth (AOD) data from three Global Atmosphere Watch-Precision Filter Radiometer (GAW-PFR) and 15 Aerosol Robotic Network-Cimel (AERONET-Cimel) radiometers was performed for the four nearby wavelengths (380, 440, 500 and 870nm) in the period 2005–2015. The goal of this study is to assess whether, despite the marked differences between both networks and the number of instruments used, their long term AOD data are comparable and consistent. AOD traceability established by the World Meteorological Organization (WMO) consists in determining the percentage of synchronous data within specific limits. If, at least, 95% of the AOD differences of an instrument compared to the WMO standards lie within these limits, both data populations are considered equivalent. The percentage of traceable data is 92.7% (380nm), 95.7% (440nm), 95.8% (500nm) and 98.0% (870nm). When small misalignments in GAW-PFR sun-pointing were fixed (period 2010–2015), the percentage of traceable data increased. The contribution of calibration related aspects to comparison outside the 95% traceability limits is insignificant in all channels, except in 380nm. The simultaneous failure of both cloud screening algorithms might occur only under the presence of cirrus, or altostratus clouds on the top of a dust-laden Saharan air layer. Differences in the calculation of the optical depth contribution due to Rayleigh scattering, and O3 and NO2 absorption have a negligible impact. For AOD >0.1, a non-negligible percentage (≈1.9%) of the AOD data outside the 95% traceability limits at 380nm can be partly assigned to the different field of view of the instruments. The comparison of the Angström exponent (AE) shows that under non-pristine conditions (AOD >0.03 and AE <1) the AE differences remain <0.1. The excellent traceability in this study has been obtained using well calibrated Master instruments.The work was supported by the project “The Global Atmosphere Watch Precision Filter Radiometer (GAW-PFR) Network for Aerosol Optical Depth long term measurements” supported by Bundesamt für Meteorologie und Klimatologie MeteoSchweiz – GCOS Swiss Office. Part of the AERONET-Cimel radiometers have been calibrated at Izaña Observatory by AERONETEUROPE Calibration Service, financed by the European Community specific programs for Integrating Activities: Research Infrastructure Action under the Seventh Framework Programme (FP7/2007-2013), ACTRIS grant agreement No. 262254, and Horizon 2020 Research 25 and Innovation Program, ACTRIS-2 grant agreement No. 654109. This research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 654109 (ACTRIS-2).The funding by MINECO (CTM2015-66742-R) and Junta de Castilla y León (VA100P17) is also gratefully acknowledge

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm−1). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∼ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring.</p

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm1^{−1}). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∼ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring
    corecore