483 research outputs found

    Signs of strong Na and K absorption in the transmission spectrum of WASP-103b

    Full text link
    Context: Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties on close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H2O\mathrm{H_2O}, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. Aims: We present an optical 550 - 960 nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500 K) and most massive (1.5 MJM_J) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. Methods: We have used Gemini/GMOS to obtain multi-object spectroscopy hroughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2 nm to infer the planet's transmission spectrum. Results: We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01 bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra.Comment: Accepted for publication in A&

    Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    Full text link
    The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M_E, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure

    Estimating the maximum sustainable yield of bonito (Sarda chiliensis, Scombridae) of northern Chile from monthly catch data

    Get PDF
    Monthly catch data of bonito Sarda chiliensis from northern Chile, from 1976 to 1989, were used to obtain a series of estimates of the Z-G parameter (i.e., total mortality minus the growth coefficient in weight). This series was then used to estimate a maximum sustainable yield of 4,500 t/year through a modified version of the surplus production model of J. Csirke and J. Caddy. The status of the fishery is discussed

    PyTranSpot\texttt{PyTranSpot} - A tool for multiband light curve modeling of planetary transits and stellar spots

    Full text link
    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot\texttt{PyTranSpot}, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot\texttt{PyTranSpot} with an MCMC framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot\texttt{PyTranSpot}'s performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 AËš\AA, indicating a flat transmission spectrum.Comment: 17 pages, 22 figures; accepted for publication in Astronomy & Astrophysic

    A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c

    Full text link
    There is growing observational and theoretical evidence suggesting that atmospheric escape is a key driver of planetary evolution. Commonly, planetary evolution models employ simple analytic formulae (e.g., energy limited escape) that are often inaccurate, and more detailed physical models of atmospheric loss usually only give snapshots of an atmosphere's structure and are difficult to use for evolutionary studies. To overcome this problem, we upgrade and employ an already existing upper atmosphere hydrodynamic code to produce a large grid of about 7000 models covering planets with masses 1 - 39 Earth mass with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled planets have equilibrium temperatures ranging between 300 and 2000 K. For each considered stellar mass, we account for three different values of the high-energy stellar flux (i.e., low, moderate, and high activity). For each computed model, we derive the atmospheric temperature, number density, bulk velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the considered species as a function of distance from the planetary center. From these quantities, we estimate the positions of the maximum dissociation and ionisation, the mass-loss rate, and the effective radius of the XUV absorption. We show that our results are in good agreement with previously published studies employing similar codes. We further present an interpolation routine capable to extract the modelling output parameters for any planet lying within the grid boundaries. We use the grid to identify the connection between the system parameters and the resulting atmospheric properties. We finally apply the grid and the interpolation routine to estimate atmospheric evolutionary tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure

    Out-of-pocket health expenditures in Colombia: a systematic review

    Get PDF
    Objectives To review the evidence of out-of-pocket (OOPE) and catastrophic expenditures (CHE) in health in Colombia. Methods Systematic review of the literature (SLR). Searches were performed in PubMed, Scopus, Scielo and Google Scholar. We used the MESH terms: out-of-pocket, catastrophic health expenditure, health and Colombia. We included cost description or cost analysis studies. Cost-effectiveness analysis of health technologies and qualitative studies were excluded. Data about period of analysis, type of study, costing perspective, OOPE, and CHE were extracted. Studies were classified as macroeconomic, microeconomic, and diseases analysis. All costs were indexed to 2018 and reported in Colombian pesos (COP)

    Perspectives on the implementation of screening and treatment for depression and alcohol Use disorder in primary care in Colombia

    Get PDF
    Q2Depression and alcohol use disorder (AUD) greatly contribute to the burden of disease worldwide, and have large impact on Colombia’s population. In this study, a qualitative analysis evaluates the implementation of a technology-supported model for screening, decision support, and digital therapy for depression and AUD in Colombian primary care clinics. Patient, provider, and administrator interviews were conducted, exploring attitudes towards depression and AUD, attitudes towards technology, and implementation successes and challenges. Researchers used qualitative methods to analyze interview themes. Despite stigma around depression and AUD, the model improved provider capacity to diagnose and manage patients, helped patients feel supported, and provided useful prevalence data for administrators. Challenges included limited provider time and questions about sustainability. The implementation facilitated the identifcation, diagnosis, and care of patients with depression and AUD. There is ongoing need to decrease stigma, create stronger networks of mental health professionals, and transition intervention ownership to the healthcare center.Revista Internacional - Indexad

    Non-local thermodynamic equilibrium effects determine the upper atmospheric temperature structure of the ultra-hot Jupiter KELT-9b

    Full text link
    Several results indicate that the atmospheric temperature of the ultra-hot Jupiter KELT-9b in the main line formation region is a few thousand degrees higher than predicted by self-consistent models. We test whether non-local thermodynamic equilibrium (NLTE) effects are responsible for the presumably higher temperature. We employ the Cloudy NLTE radiative transfer code to self-consistently compute the upper atmospheric temperature-pressure (TP) profile of KELT-9b, assuming solar metallicity. The Cloudy NLTE TP profile is ≈\approx2000 K hotter than that obtained with previous models assuming local thermodynamic equilibrium (LTE). In particular, in the 1-10−7^{-7} bar range the temperature increases from ≈\approx4000 K to ≈\approx8500 K, remaining roughly constant at lower pressures. We find that the high temperature in the upper atmosphere of KELT-9b is driven principally by NLTE effects modifying the Fe and Mg level populations, which strongly influence the atmospheric thermal balance. We employ Cloudy to compute LTE and NLTE synthetic transmission spectra on the basis of the TP profiles computed in LTE and NLTE, respectively, finding that the NLTE model generally produces stronger absorption lines than the LTE model (up to 30%), which is largest in the ultraviolet. We compare the NLTE synthetic transmission spectrum with the observed Hα\alpha and Hβ\beta line profiles obtaining an excellent match, thus supporting our results. The NLTE synthetic transmission spectrum can be used to guide future observations aiming at detecting features in the planet's transmission spectrum. Metals, such as Mg and Fe, and NLTE effects shape the upper atmospheric temperature structure of KELT-9b and thus affect the mass-loss rates derived from it. Finally, our results call for checking whether this is the case also of cooler planets.Comment: Accepted for publication on A&A. The abstract has been shortened to fit the available spac
    • …
    corecore