114 research outputs found
Impact of new technology on timber harvesting costs: Evaluation methods and literature
Timber harvesting and transport are crucial components of the cost of delivered wood to forest products processing facilities. In fact, harvesting and delivering wood often costs more than the entire costs of growing wood until harvest. As such, timber harvesting research and development are important. Additionally, research in this area is worthwhile because efficiency gains, cost improvements, and environmental benefits due to timber harvesting research can be realized in a very short time period, rather than the decades-long wait required for research investments in timber growing.
This paper provides an overview of the means of measuring the impact of new technology on timber harvesting costs. In recent years, there have been many efforts to increase research for developing better harvesting equipment and methods. In conjunction with these efforts, greater demands have been made for research efficiency and accountability (Silversides et al. 1988); several studies have therefore been completed to measure the impacts of timber harvesting research and development. These studies, other means of evaluating timber harvesting research, and suggestions for future evaluations are discussed
The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28
An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve
Space applications of superconducting microwave electronics at NASA Lewis Research Center
Since the discovery of high temperature superconductivity in 1987, NASA Lewis Research Center has been involved in efforts to demonstrate its advantages for applications involving microwave electronics in space, especially space communications. The program included thin film fabrication by means of laser ablation. Specific circuitry which was investigated includes microstrip ring resonators at 32 GHz, phase shifters which utilize a superconducting, optically activated switch, an 8x8 32 GHz superconducting microstrip antenna array, and an HTS-ring-resonator stabilized oscillator at 8 GHz. The latter two components are candidates for use in space experiments which are described in other papers. Experimental data on most of the circuits are presented as well as, in some cases, a comparison of their performance with an identical circuit utilizing gold or copper metallization
Recommended from our members
Surface Geophysical Exploration of Tx-Ty Tank Farms at the Hanford Site: Results of Background Characterization With Ground Penetrating Radar
Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects
Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)
Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis
Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways.
Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical
Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish
osteogenesis. We have used transgenic and chemical interference approaches to manipulate
these pathways and have found that both pathways are required for osteoblast differentiation
in vivo. Our analysis of bone markers suggests that these pathways act at the same
stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix
(osx). We use two independent approaches that suggest that osx is a direct target of these
pathways. Firstly, we manipulate signalling and show that osx gene expression responds
with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways.
Secondly, we have performed ChIP with transcription factors for both pathways and our
data suggest that a genomic region in the first intron of osx mediates transcriptional activation.
Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part
by directing transcription of osx to promote osteoblast differentiation at sites of bone
formation
The photochemistry of N-p-toluenesulfonyl peptides: the peptide bond as an electron donor
The scope of photobiological processes that involve absorbers within a protein matrix may be limited by the vulnerability of the peptide group to attack by highly reactive redox centers consequent upon electronic excitation. We have explored the nature of this vulnerability by undertaking comprehensive product analyses of aqueous photolysates of 12 N-p-toluene-sulfonyl peptides with systematically selected structures. The results indicate that degradation includes a major pathway that is initiated by intramolecular electron transfer in which the peptide bond serves as electron donor, and the data support the likelihood of a relay process in dipeptide derivatives
- …