148 research outputs found

    Kinetics of Cytokine mRNA Expression in the Central Nervous System Following Lethal and Nonlethal Coronavirus-Induced Acute Encephalomyelitis

    Get PDF
    AbstractThe potential role(s) of cytokines in the reduction of infectious virus and persistent viral infection in the central nervous system was examined by determining the kinetics of cytokine mRNA expression following infection with the neurotropic JHM strain of mouse hepatitis virus. Mice were infected with an antibody escape variant which produces a nonlethal encephalomyelitis and compared to a clonal virus population which produces a fulminant fatal encephalomyelitis. Infection with both viruses induced the accumulation of mRNAs associated with Th1- and Th2-type cytokines, including IFN-γ, IL-4, and IL-10. Peak mRNA accumulations were coincident with the clearance of virus and there was no obvious differences between lethally and nonlethally infected mice. TNF-α mRNA was induced more rapidly in lethally infected mice compared to mice undergoing a nonfatal encephalomyelitis. Rapid transient increases in the mRNAs encoding IL-12, iNOS, IL-1α, IL-1β, and IL-6 occurred following infection. Nonlethal infections were associated with increased IL-12, IL-1β, and earlier expression of IL-6, while lethal infections were associated with increased iNOS and IL-1α mRNA. These data suggest a rapid but differential response within the central nervous system cells to infection by different JHMV variants. However, neither the accumulation nor kinetics of induction provide evidence to distinguish lethal infections from nonlethal infections leading to a persistent infection. Accumulation of both Th1 and Th2 cytokines in the central nervous system of JHMV-infected mice is consistent with the participation of both cytokines and cell immune effectors during resolution of acute viral-induced encephalomyelitis

    Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.

    Get PDF
    DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders

    Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation

    Get PDF
    Interleukin (IL) 23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 affects memory T cell and inflammatory macrophage function through engagement of a novel receptor (IL-23R) on these cells. Recent analysis of the contribution of IL-12 and IL-23 to central nervous system autoimmune inflammation demonstrated that IL-23 rather than IL-12 was the essential cytokine. Using gene-targeted mice lacking only IL-12 (p35−/−) or IL-23 (p19−/−), we show that the specific absence of IL-23 is protective, whereas loss of IL-12 exacerbates collagen-induced arthritis. IL-23 gene-targeted mice did not develop clinical signs of disease and were completely resistant to the development of joint and bone pathology. Resistance correlated with an absence of IL-17–producing CD4+ T cells despite normal induction of collagen-specific, interferon-γ–producing T helper 1 cells. In contrast, IL-12–deficient p35−/− mice developed more IL-17–producing CD4+ T cells, as well as elevated mRNA expression of proinflammatory tumor necrosis factor, IL-1β, IL-6, and IL-17 in affected tissues of diseased mice. The data presented here indicate that IL-23 is an essential promoter of end-stage joint autoimmune inflammation, whereas IL-12 paradoxically mediates protection from autoimmune inflammation

    In Vitro Generation of Interleukin 10–producing Regulatory CD4+ T Cells Is Induced by Immunosuppressive Drugs and Inhibited by T Helper Type 1 (Th1)– and Th2-inducing Cytokines

    Get PDF
    We show that a combination of the immunosuppressive drugs, vitamin D3 and Dexamethasone, induced human and mouse naive CD4+ T cells to differentiate in vitro into regulatory T cells. In contrast to the previously described in vitro derived CD4+ T cells, these cells produced only interleukin (IL)-10, but no IL-5 and interferon (IFN)-γ, and furthermore retained strong proliferative capacity. The development of these IL-10–producing cells was enhanced by neutralization of the T helper type 1 (Th1)- and Th2–inducing cytokines IL-4, IL-12, and IFN-γ. These immunosuppressive drugs also induced the development of IL-10–producing T cells in the absence of antigen-presenting cells, with IL-10 acting as a positive autocrine factor for these T cells. Furthermore, nuclear factor (NF)-κB and activator protein (AP)-1 activities were inhibited in the IL-10–producing cells described here as well as key transcription factors involved in Th1 and Th2 subset differentiation. The regulatory function of these in vitro generated IL-10–producing T cells was demonstrated by their ability to prevent central nervous system inflammation, when targeted to the site of inflammation, and this function was shown to be IL-10 dependent. Generating homogeneous populations of IL-10–producing T cells in vitro will thus facilitate the use of regulatory T cells in immunotherapy

    IL-23 plays a key role in Helicobacter hepaticus–induced T cell–dependent colitis

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that is caused in part by a dysregulated immune response to the intestinal flora. The common interleukin (IL)-12/IL-23p40 subunit is thought to be critical for the pathogenesis of IBD. We have analyzed the role of IL-12 versus IL-23 in two models of Helicobacter hepaticus–triggered T cell–dependent colitis, one involving anti–IL-10R monoclonal antibody treatment of infected T cell–sufficient hosts, and the other involving CD4+ T cell transfer into infected Rag−/− recipients. Our data demonstrate that IL-23 and not IL-12 is essential for the development of maximal intestinal disease. Although IL-23 has been implicated in the differentiation of IL-17–producing CD4+ T cells that alone are sufficient to induce autoimmune tissue reactivity, our results instead support a model in which IL-23 drives both interferon γ and IL-17 responses that together synergize to trigger severe intestinal inflammation

    IL-23 drives a pathogenic T cell population that induces autoimmune inflammation

    Get PDF
    Interleukin (IL)-23 is a heterodimeric cytokine composed of a unique p19 subunit, and a common p40 subunit shared with IL-12. IL-12 is important for the development of T helper (Th)1 cells that are essential for host defense and tumor suppression. In contrast, IL-23 does not promote the development of interferon-γ–producing Th1 cells, but is one of the essential factors required for the expansion of a pathogenic CD4+ T cell population, which is characterized by the production of IL-17, IL-17F, IL-6, and tumor necrosis factor. Gene expression analysis of IL-23–driven autoreactive T cells identified a unique expression pattern of proinflammatory cytokines and other novel factors, distinguishing them from IL-12–driven T cells. Using passive transfer studies, we confirm that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity

    Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract

    Get PDF
    The cytokine interleukin (IL) 25 has been implicated in the initiation of type 2 immunity by driving the expression of type 2 cytokines such as IL-5 and IL-13, although its role in the regulation of immunity and infection-induced inflammation is unknown. Here, we identify a dual function for IL-25: first, in promoting type 2 cytokine-dependent immunity to gastrointestinal helminth infection and, second, in limiting proinflammatory cytokine production and chronic intestinal inflammation. Treatment of genetically susceptible mice with exogenous IL-25 promoted type 2 cytokine responses and immunity to Trichuris. IL-25 was constitutively expressed by CD4(+) and CD8(+) T cells in the gut of mouse strains that are resistant to Trichuris, and IL-25–deficient mice on a genetically resistant background failed to develop a type 2 immune response or eradicate infection. Furthermore, chronically infected IL-25(−/−) mice developed severe infection-induced intestinal inflammation associated with heightened expression of interferon-γ and IL-17, identifying a role for IL-25 in limiting pathologic inflammation at mucosal sites. Therefore, IL-25 is not only a critical mediator of type 2 immunity, but is also required for the regulation of inflammation in the gastrointestinal tract

    Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction

    Get PDF
    In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-γ remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation
    corecore