58 research outputs found

    Anomalous radial expansion in central heavy-ion reactions

    Get PDF
    The expansion velocity profile in central heavy-ion reactions in the Fermi energy domain is examined. The radial expansion is non-hubblean and in the surface region it scales proportional to a higher exponent (α>1\alpha > 1) of the radius. The anomalous expansion velocity profile is accompanied by a power law nucleon density profile in the surface region. Both these features of central heavy-ion reactions disappear at higher energies, and the system follows a uniform Hubble expansion (α1\alpha \simeq 1)

    Simple predictions from ALCOR_c for rehadronisation of charmed quark matter

    Get PDF
    We study the production of charmed hadrons with the help of ALCOR_c, the algebraic coalescence model for rehadronisation of charmed quark matter. Mesonic ratios are introduced as factors connecting various antibaryon to baryon ratios. The resulting simple relations could serve as tests of quark matter formation and coalescence type rehadronization in heavy ion collisions.Comment: 7 pages in Latex, 1 PS figur

    Multi-boson effects in Bose-Einstein interferometry and the multiplicity distribution

    Get PDF
    Multi-boson symmetrization effects on two-particle Bose-Einstein interferometry are studied for ensembles with arbitrary multiplicity distributions. This generalizes the previously studied case of a Poissonian input multiplicity distribution. In the general case we find interesting residual correlations which require a modified framework for extracting information on the source geometry from two-particle correlation measurements. In sources with high phase-space densities, multi-boson effects modify the Hanbury Brown-Twiss (HBT) radius parameters and simultaneously generate strong residual correlations. We clarify their effect on the correlation strength (intercept parameter) and thus explain a variety of previously reported puzzling multi-boson symmetrization phenomena. Using a class of analytically solvable Gaussian source models, with and without space-momentum correlations, we present a comprehensive overview of multi-boson symmetrization effects on particle interferometry. For event ensembles of (approximately) fixed multiplicity, the residual correlations lead to a minimum in the correlation function at non-zero relative momentum, which can be practically exploited to search, in a model-independent way, for multi-boson symmetrization effects in high-energy heavy-ion experiments.Comment: 22 pages ReVTex, including 8 postscript figures. Submitted to Annals of Physics (N.Y.

    Reconstruction of Hadronization Stage in Pb+Pb Collisions at 158A GeV/c

    Get PDF
    Recent data on hadron multiplicities in central Pb+Pb collisions at 158A GeV/c at mid-rapidity are analyzed within the concept of chemical freeze-out. A non-uniformity of the baryon chemical potential along the beam axis is taken into account. An approximate analytical solution of the hydrodynamic equations for a chemically frozen Boltzmann-like gas is found. The Cauchy conditions for hydrodynamic evolution of the hadron resonance gas are fixed at the thermal freeze-out hypersurface from analysis of one-particle momentum spectra and HBT correlations. The proper time of chemical freeze-out and physical conditions at the hadronization stage, such as energy density and averaged transverse velocity, are found.Comment: 21 pages including 3 figures, RevTex, semi-relativistic solution of hydrodynamics was used, submitted to Nucl. Phys.

    Evidence for non-exponential elastic proton-proton differential cross-section at low |t| and sqrt(s) = 8 TeV by TOTEM

    Get PDF
    The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.Comment: Final version published in Nuclear Physics
    corecore