6 research outputs found

    Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water

    Get PDF
    Using residual biomass for biochar production to be applied for water treatment is a cost effective and environmental-friendly alternative to activated carbon. However, biochars are materials with low textural properties (total specific area and total pore volume) and hence lower adsorption capacity compared to activated carbon. In that sense, this study aimed to impregnate ZnO on biochar derived from agricultural residual biomass to improve its As(V) and Pb(II) adsorption capacity. Biochars derived from corn cob and coffee husk were prepared by carbonization in mild conditions and then impregnated with ZnO using precipitation method. The resulting materials were comprehensively characterized describing their textural, chemical, surface, morphological and structural properties. Adsorption capacity of the produced materials was tested with As(V) and Pb(II) in kinetic and equilibrium experiments. The ZnO impregnation of the biochars derived from both precursors improves their adsorption capacities and, in most cases, accelerates the rate of adsorption of both pollutants. The best results were obtained by corncob derived ZnO impregnated biochar (CC-ZnO) reaching a maximum equilibrium adsorption capacity of 25.9 mg of As(V)/g and at least 25.8 mg of Pb(II)/g. The corncob derived ZnO impregnated biochar is a suitable adsorbent candidate for the use in the removal of As and Pb from polluted water

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit

    A Comparative Study on Activated Carbons Derived from a Broad Range of Agro-industrial Wastes in Removal of Large-Molecular-Size Organic Pollutants in Aqueous Phase

    No full text
    The National University of Tumbes provided important financial support (Proyecto de Investigacion Docente - Resolucion No 1217-2013/UNT-R). The Academy of Sciences of the Czech Republic and Consejo Nacional de Ciencia, Tecnologia e Innovacion Tecnologica (CONCYTEC) in Peru (joint project reg. No. 002/PE/2012) are also gratefully recognized for their support. The Academy of Finland and the Finnish Funding Agency for Innovation (Tekes) are acknowledged for research funding to the AdMatU project from the Development funds and to the HYMEPRO project, respectively. Thanks to Dr. Gladys Ocharan, Alex Diamond, and Hana Snajdaufova (from ICPF) for technical support and Dr. Tomas Strasak (from ICPF) for help with DFT calculations.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concyte

    Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials

    No full text
    The utilization of unconventional agricultural wastes to obtain new porous carbonaceous materials, at mild pyrolysis temperatures and without complex procedures, for either water treatment and energy storage applications is important from the economic and environmental perspective. In this study, biochars and hydrochars were prepared from banana rachis, cocoa pod husks, and rice husks at 600 °C-2 h, under nitrogen flux. The prepared materials were characterized to better understand how their morphological, textural, physical-chemical and/or structural properties correlate with their methylene blue (MB) adsorption capacities. The material with the best properties (mainly SBET > 800 m2/g) and MB adsorption capacity was a novel biochar prepared from banana rachis (BW-BC). This novel material was selected for additional kinetics and equilibrium adsorption tests for lead (Pb) along with its energy storage capacity. In equilibrium test, the novel biochar reached a maximum adsorption capacity for methylene blue of 243.4 mg/g and the highest adsorption capacity for Pb(II) of 179.7 mg/g. In the kinetic adsorption test, the equilibrium adsorption value for methylene blue was 150.4 mg/g and that for Pb(II) was 159.6 mg/g. Most importantly, the performance of the BW-BC material for energy storage in supercapacitors surpassed that of the commercial activated carbon YP50F, reaching specific energy values of 6.66 and 8.52 Wh/kg in acidic and neutral electrolytes, respectively. Among the evaluated hydrochar and biochars derived of agrowastes, the biochar prepared from banana rachis showed the best properties, being potentially useful as adsorbent or as an electrode material for energy storage

    Atomic and nuclear surface analysis methods for dental materials: A review

    No full text
    corecore