2,635 research outputs found

    Benchmark Calculations for Perchlorate from Three Human Cohorts

    Get PDF
    The presence of low concentrations of perchlorate in some drinking water sources has led to concern regarding potential effects on the thyroid. In a recently published report, the National Academy of Sciences indicated that the perchlorate dose required to cause hypothyroidism in adults would probably be > 0.40 mg/kg-day for months or longer. In this study, we calculated benchmark doses for perchlorate from thyroid-stimulating hormone (TSH) and free thyroxine (T(4)) serum indicators from two occupational cohorts with long-term exposure to perchlorate, and from a clinical study of volunteers exposed to perchlorate for 2 weeks. The benchmark dose for a particular serum indicator was defined as the dose predicted to cause an additional 5 or 10% of persons to have a serum measurement outside of the normal range. Using the data from the clinical study, we estimated the half-life of perchlorate in serum at 7.5 hr and the volume of distribution at 0.34 L/kg. Using these estimates and measurements of perchlorate in serum or urine, doses in the occupational cohorts were estimated and used in benchmark calculations. Because none of the three studies found a significant effect of perchlorate on TSH or free T(4), all of the benchmark dose estimates were indistinguishable from infinity. The lower 95% statistical confidence limits on benchmark doses estimated from a combined analysis of the two occupational studies ranged from 0.21 to 0.56 mg/kg-day for free T(4) index and from 0.36 to 0.92 mg/kg-day for TSH. Corresponding estimates from the short-term clinical study were within these ranges

    The Magnetic Properties of Heating Events on High-Temperature Active Region Loops

    Full text link
    Understanding the relationship between the magnetic field and coronal heating is one of the central problems of solar physics. However, studies of the magnetic properties of impulsively heated loops have been rare. We present results from a study of 34 evolving coronal loops observed in the Fe XVIII line component of AIA/SDO 94 A filter images from three active regions with different magnetic conditions. We show that the peak intensity per unit cross-section of the loops depends on their individual magnetic and geometric properties. The intensity scales proportionally to the average field strength along the loop (BavgB_{avg}) and inversely with the loop length (LL) for a combined dependence of (Bavg/L)0.52±0.13(B_{avg}/L)^{0.52\pm0.13}. These loop properties are inferred from magnetic extrapolations of the photospheric HMI/SDO line-of-sight and vector magnetic field in three approximations: potential and two Non Linear Force-Free (NLFF) methods. Through hydrodynamic modeling (EBTEL model) we show that this behavior is compatible with impulsively heated loops with a volumetric heating rate that scales as ϵHBavg0.3±0.2/L0.2±0.10.2\epsilon_H\sim B_{avg}^{0.3\pm0.2}/L^{0.2\pm^{0.2}_{0.1}}.Comment: Astrophysical Journal, in pres

    High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiation

    Get PDF
    Weld toe fatigue crack initiation is highly dependent on the local weld toe stress-concentrating geometry including any inherent flaws. These flaws are responsible for premature fatigue crack initiation (FCI) and must be minimised to maximise the fatigue life of a welded joint. In this work, a data-rich methodology has been developed to capture the true weld toe geometry and resulting local weld toe stress-field and relate this to the FCI life of a steel arc-welded joint. To obtain FCI lives, interrupted fatigue test was performed on the welded joint monitored by a novel multi-probe array of alternating current potential drop (ACPD) probes across the weld toe. This setup enabled the FCI sites to be located and the FCI life to be determined and gave an indication of early fatigue crack propagation rates. To understand fully the local weld toe stress-field, high-resolution (5 mu m) 3D linear-elastic finite element (FE) models were generated from X-ray micro-computed tomography (mu-CT) of each weld toe after fatigue testing. From these models, approximately 202 stress concentration factors (SCFs) were computed for every 1 mm of weld toe. These two novel methodologies successfully link to provide an assessment of the weld quality and this is correlated with the fatigue performance

    Transition region and chromospheric signatures of impulsive heating events. II. Modeling

    Get PDF
    Results from the Solar Maximum Mission showed a close connection between the hard X-ray (HXR) and transition region (TR) emission in solar flares. Analogously, the modern combination of RHESSI and IRIS data can inform the details of heating processes in ways that were never before possible. We study a small event that was observed with RHESSI, IRIS, SDO, and Hinode, allowing us to strongly constrain the heating and hydrodynamical properties of the flare, with detailed observations presented in a previous paper. Long duration redshifts of TR lines observed in this event, as well as many other events, are fundamentally incompatible with chromospheric condensation on a single loop. We combine RHESSI and IRIS data to measure the energy partition among the many magnetic strands that comprise the flare. Using that observationally determined energy partition, we show that a proper multithreaded model can reproduce these redshifts in magnitude, duration, and line intensity, while simultaneously being well constrained by the observed density, temperature, and emission measure. We comment on the implications for both RHESSI and IRIS observations of flares in general, namely that: (1) a single loop model is inconsistent with long duration redshifts, among other observables; (2) the average time between energization of strands is less than 10 s, which implies that for a HXR burst lasting 10 minutes, there were at least 60 strands within a single IRIS pixel located on the flare ribbon; (3) the majority of these strands were explosively heated with an energy distribution well described by a power law of slope »-1.6; (4) the multi-stranded model reproduces the observed line profiles, peak temperatures, differential emission measure distributions, and densities

    A Comparison of Student Achievement in the Second Language Acquisition of Spanish in Both Total Online and Traditional College Level Courses

    Get PDF
    This quantitative, comparable study examined student achievement in online and traditional on-campus college level courses in SPAN 1001 and SPAN 1002 through an ex-post facto model of study. This area of study yielded little research and provided a unique view into course achievement. In this particular study, there were two types of final exams examined, the final oral exam and the final written exam. The study took place at a two-year college in middle Georgia. The student population included college level students that enrolled in the courses over a six-semester period. The students varied in age, previous foreign language background, sex, race, and responsibilities outside of college. The exams were the same for both the online and on-campus courses and covered materials taught in the course. In addition, the exams were tied to level and instruction of each course. Once the data were collected, two independent samples t-tests were performed. The study found that students in SPAN 1001 did have comparable scores on the final oral exam and on the written exam. However, students in SPAN 1002 did not have comparable scores on the oral final exam but scores were comparable on the final written exam. The implications of the study included offering more courses online settings
    corecore