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S. Chaudhuri1,2 & J. Crump3
& P. A. S. Reed1

& B. G. Mellor1

Received: 31 August 2018 /Accepted: 29 July 2019
# The Author(s) 2019

Abstract
Weld toe fatigue crack initiation is highly dependent on the local weld toe stress-concentrating geometry including any inherent
flaws. These flaws are responsible for premature fatigue crack initiation (FCI) and must be minimised tomaximise the fatigue life
of a welded joint. In this work, a data-rich methodology has been developed to capture the true weld toe geometry and resulting
local weld toe stress-field and relate this to the FCI life of a steel arc-welded joint. To obtain FCI lives, interrupted fatigue test was
performed on the welded joint monitored by a novel multi-probe array of alternating current potential drop (ACPD) probes across
the weld toe. This setup enabled the FCI sites to be located and the FCI life to be determined and gave an indication of early
fatigue crack propagation rates. To understand fully the local weld toe stress-field, high-resolution (5 μm) 3D linear-elastic finite
element (FE) models were generated from X-ray micro-computed tomography (μ-CT) of each weld toe after fatigue testing.
From thesemodels, approximately 202 stress concentration factors (SCFs) were computed for every 1mmofweld toe. These two
novel methodologies successfully link to provide an assessment of the weld quality and this is correlated with the fatigue
performance.

Keywords Weld fatigue .Weld geometry . Tomography . Fatigue life . Stress analysis . Fatigue crack initiation . 3D finite element
analysis

1 Introduction and background

1.1 Weld toe geometry

Stress-concentrating geometrical features inherent to
welding are one of the primary causes of the low fatigue
strengths of welded joints compared to the unwelded ma-
terial. The stress-concentrating features can be broadly
classified as macro- or micro-sized; the former considers
the weld bead geometry as described by the plate thick-
ness, leg attachment length and weld toe angle and radius
(Fig. 1) whilst the latter considers weld toe flaws, which
typically consist of undercuts and spatter. The role of the
inherent flaws in fatigue crack initiation is similar to the
behaviour of sharp notches in unwelded material [2] and it
has been shown that [3] even in high-quality weld flaws
can have depths of 0.1 mm.

Due to the inherent inhomogeneity of welding process-
es, varying weld toe geometries can result, and it is
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currently not possible to economically identify and mea-
sure the inherent micro-size flaws [4–6]. Hence, a mathe-
matically simplified or “perfect” weld toe geometry is
assumed for weld toe stress and integrity assessments
with the initial flaws being considered as initial cracks,
with depth, a, and length 2c (Fig. 1).

To estimate stress concentration factors (SCFs) for simpli-
fied weld profiles, various parametric solutions can be found
in the literature [7–12]. These are based on linear-elastic finite
element modelling and are valid for specific ranges of geo-
metrical parameters. Table 1 provides SCFs calculated for
simplified weld toe geometries in the literature, with the four
most recent works using a fictitious radius at the weld toe
[14–17].

To capture the “true” weld toe geometry, a number of
methods have been used in the literature: sectioning and
microscopy, laser scanning and micro-computed tomogra-
phy (μ-CT) (Table 2). Nykänen et al. obtained local geo-
metrical parameters based on published experimental data
and, by using LEFM, reported their influence on the fa-
tigue behaviour of specimens similar to the ones used in
this work [29]. Some of these studies further utilised the
extracted geometry and computed linear-elastic weld
SCFs from it; Table 3 provides the range of SCFs obtain-
ed for each study.

In Table 3, the maximum SCF values computed for
“true” weld toe profiles are higher than the values obtain-
ed from the simplified weld toe profiles. This is primarily
due to more stress-concentrating notch-like geometries
being captured in the former, from either undulations in
the weld bead or the inherent flaws such as undercuts.

1.2 Alternating current potential drop (ACPD) fatigue
crack monitoring system

The basic premise of using a potential drop method (AC
or DC) for crack growth monitoring can be found in [30,
31]. Essentially PD systems measure the electric imped-
ance of the specimen when an excitation current is passed
through it. Alternating current potential drop (ACPD)
measures impedance as a function of the capacitive, in-
ductive and resistive components, whilst DCPD measures
only resistance. DCPD is the more conventional method
used for fatigue crack propagation growth rate measure-
ments [30], and a comparative study of the two techniques
is provided in [32].

Okumura et al. 1981 [33] used ACPD for detecting
crack initiation and monitoring crack extension during
stable slow crack propagation. In this study, it was as-
sumed that crack initiation occurred at the minimum PD

Table 1 SCF distribution obtained from simplified weld profiles

Reference SCF
distribution

Type of specimen Reason for
distribution

Otegui
et al.
1991
[13]

2.5–3.3 2D finite element model
of a T-joint

Different weld
toe radii

Pedersen
et al.
2010
[14]

2.35 3D finite element analysis
of a transverse loaded
welded joint

Only one geometry
has been
evaluated

Fricke
2012
[15]

2.4–2.6 2D finite element model
of a non-load carrying
weld toe

Element type and
method of
evaluation

Kim et al.
2015
[16]

1.7–2.3 3D finite element analysis
of transverse loaded
welded joints

Variation in
examined
welded joints

Savaidis
et al.
2016
[17]

2.31 Fictitious radius of 1 mm
used to model the weld
toe and root region

Only the SCF in
tension loading
has been
mentioned

Fig. 1 Schematic of the
mathematically simplified
geometry. (a) Global weld toe
geometry; (b) local weld toe ge-
ometry; (c) flaw at weld-toe.
Adapted from [1]
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signal and that subsequent increases in PD were related to
crack extension. Venkatasubramanian and Unvala [34]

discussed the use of ACPD for crack length measurements
and highlighted the impact of the positioning and joining
of current and voltage probes and leads, in addition to the
influence of stress on ACPD. Gibson [35] also
emphasised the impact of stress on the PD signal. Tests
done by Raujol-Veillé et al. [25] used a digital ACPD
system developed by MATELECT Ltd. to detect the size
of fatigue cracks at the weld toe of their low alloy steel
non-load carrying joints. A combination of both ACPD
and DCPD has been used by Wojcik et al. [36] for creep
damage monitoring and end of life warning for high-
temperature components.

ACPD has been used in this study due to its character-
istic “skin effect” [32, 34, 36], which causes the excitation
current to flow close to the surface of the specimen, as
opposed to flowing uniformly through the cross-section in
DCPD. The distance of the current from the surface,
called skin depth, is a function of the frequency of the
alternating current, with the skin depth decreasing (i.e.
closer to the surface) with an increase in frequency. This
effect can be used to detect small surface breaking flaws
or cracks initiating at the surface; it has been used for the
latter in this work. The equipment used for this test is
from the same manufacturer MATELECT Ltd. as in [25,
34–36].

1.3 Summary

The work presented in this paper describes the develop-
ment of a process that combines state-of-the-art tech-
niques available: to non-destructively resolve the “true”
weld toe profile of non-load carrying welds, produce
high-resolution weld toe SCF distributions and identify
crack initiation under fatigue cycling using ACPD. This

Table 3 SCF distribution obtained for true weld profiles

Reference SCF distribution Resolution Type of specimen

Branco et al.
1999 [18]

1.098–1.624
(distribution of
maximum SCF
from different
specimens)

37.5–60 μm 3D FE model of
butt-welded and
transverse
non-load carry-
ing fillet-welded
joints

Hou 2007 [19] 1.9–4.0, only 2%
of all SCFs
above 3.0.
Values are
maximum
values at each
location along
the weld toe

25 μm 3D FE model of
non-load carry-
ing cruciform
joint

Alam et al. 2010
[21]

Mean SCF 3.09.
SCF > 4
ignored

0.92 μm 2D FE model of
laser
hybrid-welded
eccentric fillet
joints

J. Raujol-Veillé
et al. 2015
[25]

Normalised SCF
relative to mean
SCF provided

10−3 relative
to flange
thickness

3D FE model of
welded T-joints

Crump 2017 [1] 2.45–8.70
(distribution of
maximum SCFs
obtained for
each section)

10 μm 2D FE model of
transverse
non-load carry-
ing fillet-welded
joints

Lener et al. 2018
[28]

4.0 (maximum
SCF)

50 μm 3D FE model of
T-joint (trans-
verse non-load
carrying
fillet-welded
joint)

Table 2 Methods used for
capturing the true weld profile Reference Methods used

Otegui et al. 1991 [13] Sectioning and rubber replica

Branco et al. 1999 [18] Sectioning and video monitoring system

Hou 2007 [19] 3D laser scanning technology

Lee et al. 2009 [20] Rubber moulding/replica

Alam et al. 2010 [21] Rubber replica and 3D optical profiler

Barsoum et al. 2011 [22] Silicone replica and vision system (3D surface capture)

Harati et al. 2015 [23] Weld impression analysis (WIA) [23, 24]

J. Raujol-Veillé et al. 2015 [25] Laser measurements

Lang et al. 2016 [26, 27] FARO mobile laser scan system

Crump 2017 [1] X-ray micro-computed tomography (μ-CT)

Lener et al. 2018 [28] FARO mobile laser scan system
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approach could lead to an evaluation of the effect of the
“true” weld toe geometry on the fatigue performance of a
good quality manual arc-welded joint using the fatigue
notch strain approach [37]. However, this is beyond the
scope of this paper and will be discussed in a future
publication.

2 Methodology

2.1 Material and specimen

A structural C-Mn steel (complying to BS EN10025-2 S355
J2+N [39]) double-sided transverse non-load carrying joint of
length 500 mmwas manufactured by metal active gas (MAG)
welding. For the work described in this paper, specimens of
width 50 mm were extracted from the welded plate avoiding
stop/start locations, the full dimensions of which are given in
Fig. 2. Mechanical properties of the parent steel are provided
in Table 4.

2.2 Experimental methods

2.2.1 Multi-probe ACPD crack monitoring

One weld toe on the specimen was equipped with a series
of ACPD probes to detect early fatigue crack initiation
and monitor early fatigue crack growth. The remaining
three weld toes were ultrasonically peened to delay fa-
tigue crack initiation.

Load-control fatigue testing was carried out in tension
at a load ratio (R) of 0.1, frequency of 5 Hz and stress
range of 270 MPa in a Mayes servo-hydraulic test

machine. A schematic of the test setup is shown in
Fig. 3a, and an image of the specimen in the test machine
is shown in Fig. 3b.

The multi-probe ACPD setup developed in this work
utilised a MATELECT® CGM-7 ACPD Crack Growth
Monitor. An array of “active” PD probe pairs was posi-
tioned along the weld toe with each probe pair posi-
tioned at 4 mm intervals and corresponding “reference”
probe pairs were positioned 10 mm below each “active”
pair in the parent metal (Fig. 4). Reference probes were
used to account for changes in the test environment and
setup that can influence the instantaneous PD readings,
i.e. temperature and current dissipation. For this work,
however, the data from the reference probes were not
used in the analysis described in the next section. All
the wires were twisted to minimise interference between
them.

PD probes were made from enamelled nickel wires and
were spot-welded to the specimen surface. Current wires
were insulated copper wires and were connected to stud-
welded nickel wire. Nickel wires were used as they pro-
vided the best stud weld connection with the steel speci-
men. Current wires were positioned along the surface of
the specimen to allow for an effect called current focus-
sing, which increases the density of the current field along
the surface. This maximises the skin effect described in
Section 1.2, and, therefore, the sensitivity of the technique
for the detection of small fatigue cracks at the weld toe. A
schematic of the arrangement is shown in Fig. 5 and an
image in Fig. 6. An AC current of 2 A at a frequency of
20 kHz was used.

The fatigue test was interrupted (stopped) after a target
PD change of 2 mV at one “active” probe pair was ob-
served. The value of 2 mV is based on the work of
Raujol-Veillé [25] using MATELECT® ACPD crack
growth monitoring equipment with an AC current of
1 A and a frequency of 20 kHz on a fillet weld. Raujol-
Veillé used a single probe in his work and a change of
2 mV represented a weld toe crack depth of 500 μm. The
work herein used a larger current to increase the sensitiv-
ity of the ACPD technique.

Fig. 2 (a) Micrograph of the
specimen; (b) fatigue specimen
geometry

Table 4 Mechanical properties of the base metal

Proof strength (MPa) UTS (MPa) Elongation (%)

464 602 25
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2.2.2 X-ray micro-computed tomography and finite element
analysis

A 5 × 5 × 50 mm specimen consisting of the weld toe
was extracted from the fatigue tested specimen using
electrical discharge machining (EDM). The entire spec-
imen was then scanned using non-destructive X-ray
micro-computed tomography (μCT) at the University
of Southampton’s μVIS Imaging Centre using the

HMX system. Nine thousand seven hundred eight radio-
graphs were generated during the scan, which were re-
constructed in three dimensions (3D) using CT Pro 3D
software. Scan parameters were determined from [1]
and are given in Table 5. In terms of the impact of
the surrounding weld bead geometry and base metal
on the weld toe stresses, it has been seen before [1]
that geometry beyond a distance of 2 mm has no sig-
nificant impact.

Fig. 3 (a) Schematic of specimen
setup; (b) image of the specimen
in the servo-hydraulic test
machine

Fig. 4 Schematic of ACPD probes layout (not drawn to scale) Fig. 5 Schematic of current wire layout (not drawn to scale)
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After 3D reconstruction, volumes were converted to a
series of 2D images. These were cropped to the region of
interest to reduce file size (Fig. 7a) and then processed in
ImageJ® using the MinError(I) algorithm [38] (Fig. 7b).
An algorithm was written in MATLAB® to extend each
image, making it representative of the full weld bead (Fig.
7c and d).

3D meshed models for finite element analysis (FEA)
were created in Simpleware ScanIP™ software on image
stacks of 150 image slices, equivalent to 0.73 mm of weld
toe length. These sub-volume sizes were chosen to obtain
feasible meshing times (approximately 2 h). The stack of
binary images shown in Fig. 7d was imported into the soft-
ware. A 3D rendered sub-volume is shown in Fig. 8 (for
μCT scan resolution of 4.9 μm). The entire 3D volume was
approximately 46.5 mm long, which gave 64 sub-volumes.
Each such sub-volume was separately meshed and solved.

A mesh validation study was performed to determine
the optimum mesh density that accurately describes the
local weld toe geometry whilst still providing feasible
meshing times. Mesh refinement was applied at the weld
toe using three concentric cylinders (Fig. 9). The re-
maining material was assigned a maximum element size
of 1.5 mm. Adaptive meshing using the +FE Free algo-
rithm in Simpleware scanIP™ was used to create the
mesh.

Two kinds of mesh validation processes were
performed:

1. Element size. In this mesh validation, the element size
in cylinder 1, the refinement zone enveloping the
weld toe along the weld bead, was varied to obtain
convergence of SCF values obtained at the weld toe.
The element size chosen was the same as the resolu-
tion of the μCT scan. Table 6 shows the results of this
validation study.

2. Cylinder 1 radius. In this mesh validation, the radius of
cylinder 1 was varied. It was seen that a radius of
0.2 mm gave feasible meshing time (approximately
2 h) and convergent SCF results. Table 7 shows the
results of this validation study. Note that the meshing
time varies for each sub-model, depending on the com-
plexity of the geometry in each model.

Based on these two types of mesh validation studies, the
final mesh parameters were decided and are presented in
Table 8. Figure 10 shows the final meshed weld toe geom-
etry for one sub-volume containing a cold lap feature. This
mesh contains a total of 8.7 million elements and 1.5 million
nodes.

FE models (without sub-modelling) were created in
ABAQUS® using the orphan meshes exported from
Simpleware scanIP™. Boundary conditions were applied
to the model to replicate the fully tensile fatigue test set-
up. A 3D static linear-elastic stress analysis was carried
out for each of the 64 sub-volumes to obtain the stress
distribution along the weld toe. Young’s modulus of
207 GPa and Poisson’s ratio of 0.3 were used for the
stress analysis. As the stress analysis was purely linear-
elastic, no hardening effects and phase transformation ef-
fects were considered. Due to the size of the models, all
computing was performed on a high-performance comput-
ing cluster facility at the University of Southampton.

Fig. 6 Specimen after ACPD wiring, ready for fatigue testing

Table 5 μ-CT scan settings

Scan parameter Setting

Target Reflection

Beam energy 200 kV

Beam intensity 175 μA

Filter material and thickness Tin, 0.25 mm

Exposure 0.177 s

Gain 5

Projections 1801

Frames per projection 16

Voxel size 4.9 μm

Approximate scan time 15 h
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Fig. 7 Image processing steps: (a) slice from the original CT volume; (b)
processed image after using ImageJ auto-threshold tool; (c) additional
processing in MATLAB to add material to the CT images; (d) final shape

after image processing representative of the actual test specimen. The
inset shows the true geometry in the final image

Fig. 8 3D sub-volume rendered in Simpleware scanIP™. The inset high-
lights the presence of the true geometry of the weld toe

Fig. 9 Mesh refinement zones in the form of three concentric cylinders,
each of different element sizes. Cylinder 1 has the smallest elements,
cylinder 3 the largest. In the overlapping sections, the element size of
the internal cylinder is given precedence
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3 Results and discussion

3.1 3D FE modelling

Weld toe SCFs were extracted from each FE model at
5 μm and 50 μm intervals using an algorithm developed
in MATLAB. Two SCFs were extracted: SCF11, the max-
imum SCF in the x-direction (longitudinal to the parent
metal) and SCFPS, the maximum SCF in the principal
stress direction. Example stress distributions from four
sub-models exhibiting different geometries and stress dis-
tributions are shown in Fig. 11. Regions with SCFs below
1.0 are grey and SCFs above 4.0 are dark red; all images
have the same scale.

Maximum SCF11 and SCFPS values for the length of
weld toe studied here (46.5 mm) are plotted in Fig. 12 at
5 μm intervals. The maximum values are plotted as there
are multiple values of stress in any particular plane. The
ACPD probe distribution along the weld toe has also been
shown in the image. Over 9300 SCF values were obtained
and statistically analysed to give the mean, median, range,
interquartile range and standard deviation for the welded
sample (Table 9). A box-whisker plot showing the SCF11
distribution is plotted in Fig. 13.

3.2 ACPD fatigue crack initiation monitoring

The interrupted fatigue test was performed to 84,344 cy-
cles, which corresponded to a PD drop of 4 mV at Probe

5. PD drops (between 0.5 and 2 mV) were observed at six
of the other twelve PD probes; no PD drops were ob-
served at the remaining five PD probes. To represent this
data graphically, the absolute potential drop (PD) value
detected by the probes is presented in Fig. 14 in millivolts
(mV). Crack initiation life was evaluated based on the
onset of PD drop in Probe 5. It is important to highlight
that crack initiation life has been defined as the number of
fatigue cycles to crack growth of a certain crack length or
depth, also referred to as a technical crack [37]. In this
work, however, crack initiation life is defined by the in-
dication obtained from the ACPD fatigue crack growth
monitoring technique.

3.3 Serial metallography results

Further validation of the work described thus far is pro-
vided by serial metallography. This was conducted at re-
gions of interest along the weld toe to capture the crack
depth and morphology to understand if it related well with
the FE and ACPD results. A controlled metallography
methodology was developed to remove material trans-
verse to the weld toe at 50 μm and 200 μm intervals.
The sections provided information on fatigue crack depth,

Table 6 Mesh validation type 1—cylinder 1 element size

Serial Cylinder 1 element size (μm) Maximum SCF

1 6 4.936

2 5.5 5.651

3 5.0 6.302

4 4.9 (μCT scan resolution) 6.396

5 4.0 6.431

Table 7 Mesh validation type 2—cylinder 1 radius

Serial Cylinder 1 radius (mm)
Element size (5 μm)

Maximum SCF Meshing time

1 0.2 6.302 89 min

2 0.4 6.311 110 min

3 0.8 6.315 178 min

4 1.2 6.332 201 min

Table 8 Final mesh refinement parameters

Zone Cylinder
1

Cylinder
2

Cylinder
3

Rest of the
model

Radius (mm) 0.2 0.3 1.0 NA

Element size
(μm)

4.9 10.0 20.0 Up to 1500

Fig. 10 Final meshed sub-volume containing a cold lap feature at the
weld toe
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Fig. 11 Example SCF11 distributions from four sub-models—(a) and (b) are examples with relatively lower stress concentration; (c) example of a cold
lap defect; (d) example of a weld bead section with consistently large stress concentration across the weld toe

Fig. 12 SCF11 and SCFPS values plotted along the length of the weld toe
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crack morphology and the number of cracks. Figure 15
features four such obtained sections. Figure 15(a) shows a
fatigue crack with bifurcation occurring possibly around
grains. Figure 15(c) shows a fatigue crack at an overlap
defect at the weld toe. Figure 15(d) shows the presence of
three fatigue cracks that are growing on two different
planes adjacent to each other. A total of 180 sections have
been taken at regions of interest, to cover a total of ap-
proximately 18 mm of the total weld toe length of
46.5 mm. The crack depths of nine different cracks are
represented along with the SCF11 distribution plot in
Fig. 16. 7.2.C, 7.3.SH.C and 7.3.LO.C represent the
mounts into which the specimen was cut for serial
metallography. The number after “.C” (for example 1 in
7.2.C1) represents the serial number of the crack. Results
from this plot will be further analysed in Section 3.4.

3.4 Validation of 3D finite element linear-elastic stress
analysis using ACPD and serial metallography

Figure 16 presents the observed crack depth at regions
identified using the ACPD probe data in Fig. 14.

Multiple cracking was observed at the weld toe.
Figure 17 contains two higher resolution plots from Fig.
16 and are the regions subjected to serial metallography.
Some smaller cracks, with depths between 5 and 50 μm
and lengths (along the weld toe for which the crack was
observed) between 20 and 200 μm, were removed from
the plots for clarity. The deepest cracks are in the regions
with the maximum change in ACPD data. This area also
corresponds to the area of consistently larger SCF11 ob-
served in the FE analysis. It corresponds to a location
where two weld ripples meet to create a region of
stress-concentrating geometry. Crack depth is seen to fol-
low the SCF distribution. However, the ACPD probes P2
and P3 have not shown the same degree of change as
probes P4, P5 and P6. This could be due to the fact that
the SCF distribution at P2 was lower than P5. No serial
metallographic evidence is available for P3. Also, P6 ex-
perienced multiple cracking, which could explain the de-
flection in measured PD voltage. The effects of stress on
ACPD potentially play a role as well, and further testing
would be required to investigate the exact effects. It is
also important to note that fatigue crack initiation is not
always associated with regions of higher SCFs, but also
occurs at surface spatter which exhibited SCF11 from
3.00-6.40.

Fatigue cracking (revealed from serial metallography) has
occurred at the locations of high stress concentration observed
in the 3D FE stress analysis. The ACPD probes information
used to indicate fatigue crack growth location and life have
further validated this.

3.5 Discussion

The multiple probe ACPD system captured early fatigue
crack propagation at the weld toe and indicated the loca-
tion of fatigue crack initiation. This gives the potential of
focussing on the crack initiation sites at the weld toe in
future tests, and to obtain more information on the most
critical weld toe geometries to fatigue. The qualitative
data obtained from continuous ACPD monitoring also
correlated well with the obtained SCF11 values and crack
depths measured from serial metallography. The correla-
tion to crack depths indicated that the ACPD signal is also
likely to be influenced by multiple cracking and
neighbouring cracking and net section stresses.

The high (elastic) SCF values obtained in this work are
larger than most of those obtained in previous similar
studies in the literature [14–19, 21, 28]. This could be
attributed to both the methods used for capturing the weld
toe geometry and the resolution. Some measurement
methods such as laser scanning are unable to captureFig. 13 Box and whisker plot for maximum SCF11 distribution

Table 9 Statistical analysis of the SCF values obtained

Statistical values SCF11 SCFPS

Mean 3.89 4.21

Median 3.71 4.03

Maximum 8.49 9.16

Minimum 2.03 2.04

1st quartile (25th percentile) 3.14 3.36

3rd quartile (75th percentile) 4.55 4.96

Standard deviation 0.94 1.05
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notch-like flaws when paint is applied to the surface prior
to scanning and many notch-like flaws observed in this
work were smaller than some of the resolutions used in
previous studies (Table 3). Higher SCFs up to 12.00 were
captured in a previous study that used μ-CT and 2D FE

stress analysis on similar arc-welded joints [1].
Interestingly, the welds studied had larger flaws than
those in this work, herein flaws of depths up to 40 μm
were observed whilst in [1], flaws up to 200 μm in depth
were observed.

Fig. 14 ACPD data for selected probes along with the point of initiation in the overall life of the specimen

Fig. 15 Sections with different
features—(a) fatigue crack
exhibiting bifurcation located at
the weld toe; b) expected fatigue
crack growth–transverse to the
stress axis; (c) fatigue cracking
from an overlap defect at the weld
toe; (d) two fatigue cracks which
eventually coalesced in further
sections
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Fig. 16 Observed crack morphology and depths from serial metallography

Fig. 17 Plots A and B represent the crack depth with SCF11 distribution for the regions that have been subject to serial metallography

Weld World



4 Conclusion

& In this study, the weld toe profile has been resolved using
μ-CT at a resolution (< 5 μm) capable of capturing the
inherent flaws. The 3D volumes have then been subjected
to a high-resolution FE stress analysis, the results of which
have been linked to fatigue crack initiation and early crack
propagation data obtained from the joint using a multiple
probe ACPD method.

& SCF11 values ranging between 2.03 and 8.49 were obtain-
ed for the weld studied in this work, which resulted in
fatigue crack depths up to 230 μm after 84,344 cycles at
a stress range of 270 MPa and stress-ratio of 0.1. SCF11
values correlated well with ACPD data and measured
crack depths from serial metallography, and the results
indicated that multiple cracking is likely to influence the
ACPD results though the data still provides a clear indi-
cation of crack initiation below 0.25 mm.

& The methodology developed in this work provides a data-
rich weld toe analysis method capable of linking the “true”
weld toe stresses with fatigue crack initiation results and
thus allowing for an improved assessment of welded joints
in the future.
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