67 research outputs found

    Big Software for SmallSats: Adapting cFS to CubeSat Missions

    Get PDF
    Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS. Large parts of cFS are now open source, which has spurred adoption outside of NASA. This paper reports on the experiences of two teams using cFS for current CubeSat missions. The performance overheads of cFS are quantified, and the reusability of code between missions is discussed. The analysis shows that cFS is well suited to use on CubeSats and demonstrates the portability and modularity of cFS code

    Radiation Tolerant, FPGA-Based SmallSat Computer System

    Get PDF
    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive

    Spacecube V2.0 Micro Single Board Computer

    Get PDF
    A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm.times.7 cm

    NASA SpaceCube Edge TPU SmallSat Card for Autonomous Operations and Onboard Science-Data Analysis

    Get PDF
    Using state-of-the-art artificial intelligence (AI)frameworks onboard spacecraft is challenging because common spacecraft processors cannot provide comparable performance to data centers with server-grade CPUs and GPUs available for terrestrial applications and advanced deep-learning networks. This limitation makes small, low-power AI microchip architectures, such as the Google Coral Edge Tensor Processing Unit (TPU), attractive for space missions where the application-specific design enables both high-performance and power-efficient computing for AI applications. To address these challenging considerations for space deployment, this research introduces the design and capabilities of a CubeSat-sized Edge TPU-based co-processor card, known as the SpaceCube Low-power Edge Artificial Intelligence Resilient Node (SC-LEARN). This design conforms to NASA’s CubeSat Card Specification (CS2) for integration into next-generation SmallSat and CubeSat systems. This paper describes the overarching architecture and design of the SC-LEARN, as well as, the supporting test card designed for rapid prototyping and evaluation. The SC-LEARN was developed with three operational modes: (1) a high-performance parallel-processing mode,(2)a fault-tolerant mode for onboard resilience, and (3) a power-saving mode with cold spares. Importantly, this research also elaborates on both training and quantization of TensorFlow models for the SC-LEARN for use onboard with representative, open-source datasets. Lastly, we describe future research plans, including radiation-beam testing and flight demonstration

    Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    Get PDF
    Earth Observing 1 (E0-1) satellite has an imaging spectrometer (hyperspectral) instrument called Hyperion. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days. With slewing of the satellite and allowing for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that is sought is the ability to image natural hazards in a daily time series for space based imaging spectrometers. The Hyperion can not provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically in the same orbit, can be used to provide daily coverage, cost-effectively

    SpaceCube Demonstration Platform

    Get PDF
    A document discusses how the HST SM4 SpaceCube flight spare was modified to create an experiment called the Space- Cube Demonstration Platform (SC DP) for use on the MISSE7 Space Station payload (in collaboration with NRL). It is designed to serve as an on-orbit platform for demonstrating advanced fault tolerance technologies. A simple C&DH (command and data handling) system was developed for the Virtex4 FPGAs (field programmable gate arrays). Both Virtex4s on each SpaceCube run the same program, and both receive incoming telemetry. The rad-hard service FPGA performs simple error checking to verify that the incoming telemetry is valid. The SpaceCube framework was modified to allow for new program files to be sent from the ground, to be stored on the SpaceCube, and to be executed through ground commands. Each SpaceCube Virtex4 FPGA has resources set aside for experiments that are functionally isolated from the C&DH system. The experiments communicate to the C&DH system through a set of dual port memories, and this area is where the fault-tolerance experiments are executed. With the use of Xilinx commercial Virtex4 FX60 FPGAs, the fault tolerant framework allows the system to recover from radiation upsets that occur in the rad-soft parts (Virtex4 FPGA logic, embedded PPCs in Virtex4 FPGAs, SDRAM and Flash), the C&DH system that runs simultaneously on both Virtex4 FPGAs that uses a robust telemetry packet structure, checksums, and the rad-hard service FPGA to validate incoming telemetry. The ability to be reconfigured from the ground while in orbit is a novel benefit, as well as is the onboard compression capabilities that allow compressed files from the ground to be uploaded to the SpaceCube

    Machine-Learning Space Applications on SmallSat Platforms with TensorFlow

    Get PDF
    Due to their attractive benefits, which include affordability, comparatively low development costs, shorter development cycles, and availability of launch opportunities, SmallSats have secured a growing commercial and educational interest for space development. However, despite these advantages, SmallSats, and especially CubeSats, suffer from high failure rates and (with few exceptions to date) have had low impact in providing entirely novel, market-redefining capabilities. To enable these more complex science and defense opportunities in the future, small-spacecraft computing capabilities must be flexible, robust, and intelligent. To provide more intelligent computing, we propose employing machine intelligence on space development platforms, which can contribute to more efficient communications, improve spacecraft reliability, and assist in coordination and management of single or multiple spacecraft autonomously. Using TensorFlow, a popular, open-source, machine-learning framework developed by Google, modern SmallSat computers can run TensorFlow graphs (principal component of TensorFlow applications) with both TensorFlow and TensorFlow Lite. The research showcased in this paper provides a flight-demonstration example, using terrestrial-scene image products collected in flight by our STP-H5/CSP system, currently deployed on the International Space Station, of various Convolutional Neural Networks (CNNs) to identify and characterize newly captured images. This paper compares CNN architectures including MobileNetV1, MobileNetV2, Inception-ResNetV2, and NASNet Mobile

    Hyperspectral Cubesat Constellation for Natural Hazard Response (Follow-on)

    Get PDF
    The authors on this paper are team members of the Earth Observing 1 (E0-1) mission which has flown an imaging spectrometer (hyperspectral) instrument called Hyperion for the past 15+ years. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days and with slewing, of the satellite for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that has been sought is the ability to image natural hazards in a daily time series for space-based imaging spectrometers. The Hyperion cannot provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically can be used to provide daily coverage or even diurnal coverage, cost-effectively. This paper sought to design a cubesat constellation mission that would accomplish this goal and then to articulate the key tradeoffs

    NASA SpaceCube Intelligent Multi-Purpose System for Enabling Remote Sensing, Communication, and Navigation in Mission Architectures

    Get PDF
    New, innovative CubeSat mission concepts demand modern capabilities such as artificial intelligence and autonomy, constellation coordination, fault mitigation, and robotic servicing – all of which require vastly more processing resources than legacy systems are capable of providing. Enabling these domains within a scalable, configurable processing architecture is advantageous because it also allows for the flexibility to address varying mission roles, such as a command and data-handling system, a high-performance application processor extension, a guidance and navigation solution, or an instrument/sensor interface. This paper describes the NASA SpaceCube Intelligent Multi-Purpose System (IMPS), which allows mission developers to mix-and-match 1U (10 cm × 10 cm) CubeSat payloads configured for mission-specific needs. The central enabling component of the system architecture to address these concerns is the SpaceCube v3.0 Mini Processor. This single-board computer features the 20nm Xilinx Kintex UltraScale FPGA combined with a radiation-hardened FPGA monitor, and extensive IO to integrate and interconnect varying cards within the system. To unify the re-usable designs within this architecture, the CubeSat Card Standard was developed to guide design of 1U cards. This standard defines pinout configurations, mechanical, and electrical specifications for 1U CubeSat cards, allowing the backplane and mechanical enclosure to be easily extended. NASA has developed several cards adhering to the standard (System-on-Chip, power card, etc.), which allows the flexibility to configure a payload from a common catalog of cards

    Mossbauer and optical spectroscopic study of temperature and redox effects on iron local environments in a Fe-doped (0.5 mol% Fe2O3)18Na2O–72SiO2 glass

    Get PDF
    Local environments of ferric and ferrous irons were systematically studied with Mössbauer (at liquid helium temperature)and ultraviolet–visible–near infrared spectroscopic methods for various 18Na2O–72SiO2 glasses doped with 0.5 mol% Fe2O3. These were prepared at temperatures of 1300–1600 °C in ambient air or at 1500 °C under reducing conditions with oxygen partial pressures from 12.3 to 0.27 x 10-7 atmospheres. The Mössbauer spectroscopic method identified three types of local environments, which were represented by the Fe3+ sextet, the Fe3+ doublet, and the Fe2+ doublet. The Fe3+ sextet ions were assigned to “isolated” octahedral ions. Under reducing conditions, the octahedral Fe3+ ions were readily converted into octahedral ferrous ions. The Fe3+ doublet exists both in octahedral and tetrahedral environment, mainly as tetrahedral sites in the reduced samples. The tetrahedral ions were found stable against reduction to ferrous ions. The Fe2+ doublet sites existed in octahedral coordination. Combining results from both spectroscopic studies, the 1120- and 2020-nm optical bands were assigned to octahedral ferrous ions with a different degree of distortion rather than different coordinations. Further, we assigned the 375-nm band to the transition of octahedral ferric ions that are sensitive to the change of oxygen partial pressure in glass melting and 415-, 435-, and 485-nm bands to the transitions of the tetrahedral ferric ions that are insensitive to oxidation states of the melt. The effect of ferric and ferrous ions with different coordination environments on the glass immiscibility was elucidated
    • …
    corecore