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ABSTRACT 

Due to their attractive benefits, which include affordability, comparatively low development costs, shorter 

development cycles, and availability of launch opportunities, SmallSats have secured a growing commercial and 

educational interest for space development. However, despite these advantages, SmallSats, and especially CubeSats, 

suffer from high failure rates and (with few exceptions to date) have had low impact in providing entirely novel, 

market-redefining capabilities. To enable these more complex science and defense opportunities in the future, small-

spacecraft computing capabilities must be flexible, robust, and intelligent. To provide more intelligent computing, we 

propose employing machine intelligence on space development platforms, which can contribute to more efficient 

communications, improve spacecraft reliability, and assist in coordination and management of single or multiple 

spacecraft autonomously. Using TensorFlow, a popular, open-source, machine-learning framework developed by 

Google, modern SmallSat computers can run TensorFlow graphs (principal component of TensorFlow applications) 

with both TensorFlow and TensorFlow Lite. The research showcased in this paper provides a flight-demonstration 

example, using terrestrial-scene image products collected in flight by our STP-H5/CSP system, currently deployed on 

the International Space Station, of various Convolutional Neural Networks (CNNs) to identify and characterize newly 

captured images. This paper compares CNN architectures including MobileNetV1, MobileNetV2, Inception-

ResNetV2, and NASNet Mobile.

I. INTRODUCTION 

CubeSats (a subclass of SmallSats) were originally 

proposed as teaching tools and early technology 

demonstrations.  However, since their inception with the 

space community, their role has matured, extending into 

more significant defense and science applications. This 

evolutionary trend towards more significant missions 

and goals led to a request from the National Aeronautics 

and Space Administration (NASA) and the National 

Science Foundation (NSF) to the National Academies of 

Sciences, Engineering, and Medicine to form a 

committee and conduct a review of the potential of the 

CubeSat platform and make key recommendations to 

improve the capabilities of the platform for future 

missions. The survey [1] published in 2016 concluded 

that CubeSats were already performing and meeting 

valuable science goals.  However, while all space-

science disciplines can benefit from CubeSat 

innovations, these small platforms cannot address or be 

a complete substitute for all platforms. The survey 

described that CubeSat systems “excel at simple, 

focused, or short-duration missions and missions that 

need to be comparatively low cost or that require multi-

point measurements.”  

The committee recommended focusing on maintaining 

low-cost approaches as the cornerstone of CubeSat 

development, while simultaneously stressing the 

importance and benefit of operating CubeSats and other 

SmallSats in swarms or constellations for multi-point 

measurements and extended spatial and temporal 

coverage. Combining these recommendations with the 

strict constraints (size, weight, power, and cost) of the 

small platform establishes a complex trade space to meet 

challenging science and defense goals.  

In addition to the management and autonomy challenges 

of distributed satellite missions described in [1], many 

organizations also emphasize a distinct need for data 

analysis. The decadal strategy for Earth observation from 

space [2] highlights the need for studying large datasets 

captured by future constellations with semi-automated or 

autonomous capabilities for hazard detection and 

monitoring, hazard mapping, and hazard forecasting. 

Similarly, in his keynote address to the Small Satellite 
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Conference, Robert Cardillo, director of the National 

Geospatial-Intelligence Agency (NGA) noted that, with 

increasing data and imagery, new emphasis needs to be 

placed on smart and efficient analysis. He stated that 

NGA has moved from “… staring at pictures and 

reporting, to programming algorithms and automation 

to drive production [3].” Finally, these key objectives for 

future missions are repeated in the Long-Term Science 

and Technology Challenges [4] described by the Air 

Force Space Command (AFSPC). Critical defense focus 

areas for AFSPC include the study of autonomous, deep-

learning, and highly adaptive systems, with additional 

interagency collaboration for small-satellite technology 

and big-data analysis. 

To enable these large, distributed spacecraft missions, 

numerous technological advances are required. This 

paper proposes one such advance to benefit spacecraft 

autonomy and analysis capability, through the 

demonstration and planned flight verification of machine 

learning (ML) on CubeSat-scale processors. To achieve 

future mission objectives, more intelligent and capable 

computing can mitigate some of these challenges:  

“Onboard data processing, autonomous systems, and 

navigation could further reduce the burden and cost of 

the ground segment and mission operations in 

CubeSats [1].” 

II. BACKGROUND 

This section provides a cursory overview to Artificial 

Intelligence (AI) concepts and their uses in space 

computing. Additionally, frameworks and models for 

machine learning, a critical component for AI, are 

discussed. This section also describes the challenges for 

space computers to effectively run machine-learning 

applications. Finally, several AI-related designs and 

projects are highlighted. 

Benefits for Space Applications  

The concept of applying general, artificial-intelligence 

(AI) techniques is not novel and has been proposed for 

several decades. In [6], Girimonte from the European 

Space Agency (ESA) surveys several research areas of 

AI for space applications, specifically: distributed 

artificial intelligence (including swarms); large data 

analysis; enhanced situation self-awareness; and 

decisions support for spacecraft system design. AI is a 

broad subject, so for simplicity this paper highlights 

more recent examples of AI applications in three relevant 

categories: autonomy; communications; and analysis. 

Spacecraft Autonomy is widely studied and includes a 

broad spectrum of topics such as navigation, 

coordination, planning and scheduling, and even 

reliability. Mission designers desire autonomy for a 

variety of reasons. One paramount motivator is round-

trip communication delay time between an operator and 

a satellite. In scenarios, where the delay time of an 

operator responding is considerable, the spacecraft must 

be able to autonomously make decisions. Moreover, 

these intelligent systems can help improve spacecraft 

reliability by being trained to react to unexpected 

situations and guide the spacecraft to safer operational 

states with autonomous decision-making. Prominent 

examples are demonstrated by the Mars rovers. Spirit, 

one of the two rovers which landed on Mars in 2004, has 

software called AutoNav for terrain assessment to 

autonomously detect hazards based on imagery [7]. The 

Opportunity rover and the ChemCam spectrometer of 

Curiosity use automated data-collection software called 

AEGIS (Autonomous Exploration for Gathering 

Increased Science) to autonomously select high-value 

science targets [8]. Autonomy is also critically essential 

for future deep-space exploration, because these 

spacecraft may be outside communication range for 

extended periods of time and will encounter unknown 

environmental conditions, requiring the need to react 

accordingly. Chien describes flight software to enable 

onboard autonomy for deep-space exploration in [9]. 

Finally, intelligence can assist in coordinating and 

managing large swarms of spacecraft without causing 

the number of necessary ground operators to scale 

linearly as the constellation sizes increase. Coordination 

of swarms is described as the “fleet-management” 

problem in [1].        

AI systems can be trained to reduce transmission 

bandwidth and processing on spacecraft by recognizing 

and capturing sensor data with pertinent information and 

discarding ineffectual ones. For spacecraft 

communications, such a requirement is essential to 

improve the efficacy of the (possibly erratic) 

communication link between a satellite and its ground 

station. There are two relevant examples of using 

machine learning to improve communication. The first is 

called MEXAR2 [10] (Mars Express AI Tool) and is 

used to determine the best schedule to optimize the 

timing of transmitted data packets to improve downlink 

capability. The second significant example is the Space 

Communications and Navigation (SCaN) Testbed [11] 

aboard the International Space Station (ISS). This 

experiment is designed to explore cognitive radio, which 

uses AI to find underused portions of the electromagnetic 

spectrum for communication.  

As described previously, machine intelligence can also 

apply to performing on-board analysis for Earth-

observation tasks. These tasks typically include hazard 

analysis (e.g. fire and flood detection), target detection, 

area monitoring, and weather forecasting. In [12], 
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researchers at NASA Goddard used ML to detect 

wildfires on MODIS (Moderate-resolution imaging 

spectroradiometer) data.   

TensorFlow and TensorFlow Lite 

There is an abundance of terrestrial research and 

development into employing AI for everyday life, such 

as self-driving automobiles. TensorFlow [13] is a 

popular, open-source, machine-learning framework 

developed by Google for research on many of the latest 

autonomous systems. In late 2017, Google released the 

developer preview of TensorFlow Lite, a framework for 

ML inference on embedded devices. The challenge for 

space vehicles also adopting such software frameworks 

is that these ground-based applications are typically 

executed on powerful CPU processors or GPU co-

processors with high performance and maintainability. 

Small spacecraft, and CubeSats specifically, face 

challenges imposed by platform constraints on size, 

weight, and power, which limit processing capability, 

and prevent them from easily adapting the same designs. 

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of 

type of neural network most commonly used to analyze 

visual data. One of the very first CNNs, named as LeNet-

5, was proposed in 1998 [14]. The core components of a 

CNN are small matrices of “weights.” A convolutional 

layer in a CNN consists of one or more of these matrices. 

The output of one of these layers is the result of the 

convolution of the layer’s kernels with the input. Typical 

CNNs use an activation layer after a convolutional layer. 

Activation layers apply a nonlinearity function to allow 

the network to approximate nonlinear functions. Some 

activation functions have been shown to decrease the 

time required to train some networks [15]. Popular 

activation functions include sigmoid, tanh, and the 

rectified linear unit (ReLU) [16]. The final layers of a 

typical CNN tend to be “fully connected” layers, which 

act as classifiers by reducing the feature map from the 

convolutional layers to a vector of output classes by a 

series of matrix multiplications. The output with the 

largest activation value is chosen as the result. The 

weights of each convolutional kernel as well as each 

fully connected layer are learned during the training 

process via backpropagation [17]. CNNs have emerged 

as the leader in image-processing tasks with Machine 

Learning since 2012 [18]. Extensive research has been 

performed to determine the optimal architecture for 

CNNs [19-21]. Figure 1 shows a basic CNN architecture.  

                                                           

*https://adeshpande3.github.io/A-Beginner%27s-Guide-

To-Understanding-Convolutional-Neural-Networks/ 

 

Figure 1: A Basic CNN Architecture* 

In practice, the use of CNNs is composed of two main 

tasks: training and inference. Training is the process of 

“learning” the optimal set of weights that maximize 

accuracy of the desired task (e.g. image classification, 

object detection, semantic segmentation). Training is a 

highly compute-intensive process often accelerated by 

GPUs. Inference is the process of using a trained model 

(where parameters are no longer modified) to make 

decisions on novel data. Inference is a less compute-

intensive process than training and has be performed on 

CPUs, GPUs, and FPGAs. 

Computing Challenge 

The most defining challenges for more advanced and 

capable artificial intelligence on satellites stem from the 

constraints imposed by small spacecraft computers. 

Unfortunately, due to the hazards of a radiation-filled 

space environment, radiation-hardened (rad-hard) 

computers are most commonly used in critical missions. 

However, these rad-hard computers are prohibitive due 

to cost and capability. Rad-hard devices are too 

expensive for missions, like CubeSats, that prioritize 

cost, and because they are expensive to develop, are 

typically outdated in both performance and features 

when compared to state-of-the-art commercial designs. 

Alternatively, mission developers can choose to fly 

commercial devices, which offer improved performance 

and energy efficiency over rad-hard devices but are 

susceptible to radiation effects. An overview of SmallSat 

computing and related challenges can be found in [22].  

Consequently, these computing limitations are 

particularly challenging to ML because a significant 

amount of progress in deep learning and modern 

networks has been specifically conducted using GPUs. 

Many state-of-the-art network models require high-end 

GPU devices to run in inference, and even more 

capability to train. While there is some progress towards 

developing these networks for mobile applications 

(phones specifically), the most impressive results are 

attributed to high-end GPU systems [20]. Deep network 

models require significant amounts of processing 
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capability for matrix operations, and extensively strain 

the memory bandwidth and capacity of even the most 

capable systems. 

As described in [22], modern space computers would 

struggle to meet the minimum requirements for complex, 

deep-learning architectures. Additionally, there are a 

scarce number of GPUs that have been evaluated to work 

in a space environment, while simultaneously meeting 

the low-power restrictions of SmallSat platforms. These 

computing challenges are further emphasized by Robert 

Laudati, the managing director of commercial products 

at Harris Space and Intelligence Systems. He comments 

that the future is to move more computing to space (with 

onboard computing), and that “he does not see that 

capability coming to the market any time soon.”†      

Related Research  

Despite the considerable challenge posed by the 

computational requirements of ML, there are several 

related works that explore the state-of-the-art networks 

for embedded systems and satellites. In [23], Schartel 

trained the SqueezeNet model on a terrestrial system and 

planned to transfer the model to an embedded system; 

however, the entire design was not fully implemented. In 

[24], researchers at the University of New Mexico 

partnered with Stinger Ghaffarian Technologies and Air 

Force Research Laboratory Space Vehicles Directorate 

to demonstrate image classification on the Nvidia TX1. 

In their demonstration, a desktop GPU is used to train the 

model, and inference is performed on the TX1 with the 

CUDA Deep Neural Network (cuDNN) library and 

TensorRT. Lastly, in [25], SRC Inc., developed their 

own deep CNN framework for use on a Xilinx Artix-7 

FPGA platform. With their design, they studied image 

classification and compared their results against the IBM 

TrueNorth NS1e development board, a neuromorphic 

computer with machine-learning capabilities.  

III. APPROACH 

In comparison to related research, our approach focuses 

on developing a machine-learning solution that can run 

on existing flight hardware with TensorFlow. For our 

testbed and experiment, we focus on the Xilinx Zynq-

7020 which is the featured technology of the CSPv1 

flight computer described in [22]. To test the 

computational capability of the Xilinx Zynq-7020 for 

ML inference, we trained CNNs for image classification 

and benchmarked the accuracy, execution time, and 

runtime memory usage of four target CNN architectures 

on the Digilent ZedBoard development system. 

                                                           

† http://spacenews.com/artificial-intelligence-arms-race-accelerating-in-space/ 

Dataset  

Our dataset consists of images collected by our flight 

system on the ISS. Our mission, known as STP-H5/CSP 

[26] launched on the SpaceX CRS-11 in February 2017. 

Since its launch, STP-H5/CSP has been collecting and 

downlinking images. Over the past year, we have 

downloaded approximately eight thousand thumbnails, 

each a 489×410 pixel image. The images from CSP were 

used to create a small dataset to train image-

classification models. Most of the images depict one of 

five classes: black (Example of Images in Each 

ClassFigure 2a); cloud/water (Figure 2b); distorted 

(Figure 2c); land (Figure 2d); or white (Figure 2e). Each 

of the 8000 images was downloaded from CSP and 

labeled as one of the classes cited above. 

 

Figure 2: Example of Images in Each Class 

Transfer learning is the process of using a trained ML 

model to bootstrap a model for a related task. In the case 

of a CNN, transfer learning means freezing previously 

trained weights for convolution layers and only learning 

the weights for the classification layers [27]. Despite 

having thousands of images in the STP-H5/CSP 

collection, this data is considered limited for training 

deep CNNs. Thus, training a CNN such as MobileNet or 

Inception from scratch with only this limited dataset was 
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deemed impractical. However, transfer learning provides 

a method to use a relatively small dataset in the training 

process. To bootstrap our models, we used CNNs pre-

trained on ImageNet, a massive, industry-standard 

dataset for image classification [19]. 

Target CNN Architectures 

We compare the classification accuracies of four modern 

CNN architectures (MobileNetV1, MobileNetV2, 

Inception-ResNetV2, and NASNet Mobile) on our 

dataset. Table 1 shows the reported top-1 and top-5 

accuracies of each target architecture and their variants 

on ImageNet data. 

Table 1: ImageNet Image Classification Accuracies 

of Relevant CNN Architectures  

Network Top-1 Accuracy Top-5 Accuracy 

MobileNetV1 70.6% 89.5% 

MobileNetV2 74.7% 92.5% 

GoogLeNet - 93.3% 

ResNet 80.6% 96.4% 

Inception-ResNetV2 80.1% 95.1% 

NASNet 82.7% 96.2% 

NASNet Mobile 74.0% 91.6% 

MobileNetV1 was developed by Google in 2017. It is 

considered a “mobile-first” (emphasizing phones and 

embedded devices primarily) CNN architecture, 

designed to be more efficient for inference than a typical 

CNN. It replaces standard convolutions with depthwise-

separable convolutions. This approach drastically 

reduces the number of trained parameters, which reduces 

model size and improves inference performance [28]. 

MobileNetV2 [29] is a revision of MobileNetV1 which 

adds inverted residuals and linear bottleneck 

connections. Both versions of MobileNet use two 

hyperparameters, a width multiplier and a resolution 

multiplier, to specialize the architecture. The width 

multiplier is a scaling factor applied to the number of 

convolution filters in each layer of the network. The 

typical values for the width multiplier are 0.25, 0.50, 

0.75, and 1.0 for MobileNetV1. The resolution multiplier 

is a scaling factor applied to the size of the input image 

to the network. The typical values for the input image 

resolution are 128, 160, 192, and 224.  

Inception-ResNetV2 was also developed by Google and 

combines the architectures of GoogLeNet, the winner of 

the ILSVRC (ImageNet Large Scale Visual Recognition 

Challenge) in 2014, and Microsoft’s ResNet, the 2015 

ILSVRC winner [19].  Inception-ResNetV2 is a 

                                                           

‡ https://www.tensorflow.org/hub/ 

GoogLeNet architecture with Inception Modules and 

residual connections. Inception Modules use a 

combination of 1×1, 3×3, and 5×5 convolutions as well 

as 3×3 max pooling with dimension reductions via 1×1 

convolutions to lower computational complexity [19]. 

Residual connections allow layers to fit a residual 

identity mapping between layers [19]. 

NASNet is a product of Google’s AutoML project. 

NASNet is inspired by the Neural Architecture Search 

(NAS) framework which uses a reinforcement learning 

search method to optimize architecture configurations 

[30]. The largest NASNet variant achieved the highest 

published accuracy to date on ImageNet image 

classification [30]. NASNet Mobile is a smaller variant 

of NASNet. 

As a starting point for re-training the target CNNs, we 

used Google’s TensorFlow Hub models‡. TensorFlow 

Hub is a collection of pre-trained models that can be used 

for transfer learning and was released by Google in 2018. 

Our dataset of 8000 images was divided into three sets, 

training (70%), validation (10%), and testing (20%).  

Each network was trained for 500 epochs with a learning 

rate of 0.01 and a batch size of 100 images. 

IV. RESULTS  

In this section we present results of our studied networks 

on our image dataset. We compare the results based on 

accuracy of the network, followed by performance, 

which is essential to embedded space systems. 

Accuracy Results 

For our displayed results, we measured the top-1 

(prediction from the model matches the image label) and 

top-2 (either of the two highest-probability predictions 

from the model match the image label) accuracies of 

each transfer-learned CNN on the test set. Each 

MobileNetV1 and MobileNetV2 variant (all values for 

width and resolution multipliers) was trained, however, 

for brevity we only present the most accurate variants.  
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Figure 3: CNN Accuracy on STP-H5/CSP Images 

Each CNN performed adequately on the dataset, 

achieving over 90% top-1 accuracy and near-perfect top-

2 accuracy, as shown in Figure 3. MobileNetV1 

outperformed the other CNNs, despite having the worst 

accuracy on ImageNet in the set. It is worth noting that 

the most-accurate MobileNetV1 variant was with the 

width multiplier 1.0 and input image resolution 224×224 

(i.e. no reduction in the number of convolution filters or 

input image resolution). 

 

Figure 4: Per-class Accuracy on  

STP-H5/CSP Images 

In addition to top-1 and top-2 accuracy, we measured 

how accurate each model was on each of the classes in 

our STP-H5/CSP dataset as displayed in Figure 4. For 

the black, distorted, and white classes, each model 

performed well as these classes are distinctive, with little 

overlap in features. The cloud/water and land classes, 

however, are more difficult for classification. There is 

similarity between the cloud/water and land classes, 

making it difficult for all tested models to distinguish 

between the classes consistently, specifically because 

many images contain some land, water, and clouds. 

MobileNetV1 is the only architecture that achieved over 

90% accuracy on cloud/water images; it additionally 

maintained nearly 80% accuracy on land images. 

NASNet Mobile and Inception-ResNetV2 performed 

best on land images, but both struggled with cloud/water 

images. Finally, MobileNetV2 performed well on 

cloud/water images, at the expense of low land-image 

accuracy. 

Performance Results 

For our on-board performance analysis, we focused on 

MobileNetV1 because it was the most accurate CNN on 

the STP-H5/CSP test dataset. Using TensorFlow Lite, 

we performed inference on all MobileNetV1 variants. 

We also measured the execution time required to classify 

an image and the amount of memory used during 

classification. All tests were conducted on the Digilent 

ZedBoard, which is regularly used as a facsimile 

development kit for the CSPv1 flight computer. 

 

Figure 5: MobileNetV1 Execution Time on ZedBoard 

 

 

Figure 6: MobileNetV1 Memory Usage on ZedBoard 

Both execution time (Figure 5) and memory usage 

(Figure 6) scale linearly with respect to the number of 

pixels in the input image and quadratically with the 

width multiplier. The width multiplier (i.e. the number 

of convolution filters in each layer) has a larger effect 

than image resolution on both execution time and 

runtime memory usage. The smallest MobileNetV1 

variant (width multiplier 0.25 and input image resolution 

128x128) achieves 11 FPS on the Zynq-7020 while using 

just 8 MB of RAM. Our performance satisfies mission 
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requirements and falls well within the memory 

constraints of our space system. 

V. CONCLUSIONS  

SmallSats in general and CubeSats in particular face 

arduous challenges in achieving more significant science 

and defense goals. To meet new mission objectives, on-

board data analysis is rapidly becoming the key focus 

area for SmallSat development. AI systems can enable 

more efficient use of some system resources and perform 

crucial processing tasks for autonomous operation on a 

spacecraft. However, modern ML frameworks are 

typically executed on resource-intensive GPUs, making 

their deployment on these space systems very limited.   

Using a dataset of collected space images from our STP-

H5/CSP mission on the ISS, this paper demonstrates that 

we can achieve reasonable performance with modern 

ML models on a low-memory, low-power, space-grade, 

embedded platform. Our results show it would be 

feasible for the TensorFlow Lite framework to be used 

for deploying deep-learning models in future space 

missions on similar space-computing platforms. 

Additionally, leveraging CNNs pre-trained on ImageNet 

is shown to be effective for image-classification tasks on 

terrestrial-scene images. 

Future Work 

This research establishes the foundation towards 

additional extensions into AI-capable small spacecraft. 

The immediate next step is to upload the inferred CNNs 

directly onto the STP-H5/CSP system, thereby enabling 

us to filter undesirable images (i.e. images classified as 

white, black, and distorted) in real-time. Thus, AI can 

prevent the system from wasting bandwidth by sending 

insignificant images. To extend the classification, more 

complex image-processing tasks will be studied, such as 

object detection and semantic segmentation. Since our 

NSF SHREC Center is regularly proposing new missions 

and apps, this research can be used for more complex 

science classifications with smaller GSD (Ground 

Sample Distance) technologies to be featured on future 

mission proposals. Finally, future extensions could 

include adding accelerated TensorFlow Lite inference 

operations using FPGAs (e.g., in CSP) and incorporating 

other hardware accelerators within the design.  
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