68 research outputs found

    Chemical and physical properties of the variegated Pluto and Charon surfaces

    No full text
    International audienceWe present new photometric and spectroscopic observations of the Pluto-Charon system carried out at the VLT-ESO (Chile) with two 8-meter telescopes equipped with the FORS2, ISAAC and SINFONI instruments. The spectra were obtained in the 0.6-2.45ÎŒm range with a spectral resolution from 300 to 1500. The SINFONI data were obtained using Adaptive Optics, allowing a complete separation of the two bodies. We derive both objects' magnitudes in the near infrared and convert them into albedo values. These first near infrared photometric data allow to adjust the different parts of Pluto's spectrum, provided by the three instruments. We run spectral models in order to give chemical and physical constraints on the surface of Pluto and Charon. We discuss the dilution properties of the methane ice and its implications on Pluto's surface. The heterogeneities of the pure and diluted methane ice on Pluto's surface is also investigated. The high signal-to-noise level of the data and our analyses may support the presence of ethane ice on the surface of Pluto, which is one of the main products of the methane irradiation and photolysis. The analyses of the spectra of Charon suggest that the water ice is almost completely in its crystalline form and that the ammonia compound is hydrated on the surface of this satellite

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru

    Thermal desorption of CH4 retained in CO2 ice

    Full text link
    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.Comment: 8 pages, accepted for publication in Astrophysics & Space Scienc

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    Physical Properties of Trojan and Centaur Asteroids

    No full text
    Trojan and Centaurs are primitinve, peculiar objects orbiting in the middle solar system. Both groups characteristically have low albedos and red colors. Physical observations of Trojans reveal featureless reddish spectra, implying surfaces probably rich in complex solid materials. The interiors are expected to be rich in H2O ice and other volatile material. Centaurs have surfaces showing dramtatically different spectral reflectances, from neutral to very red. Some spectra are featureless, while others show signatures of water ice, methanol, or other light hydrocarbons. Trojans were formed near Jupiter's orbit, while Centaurs where formed far beyond Jupiter's orbit, but both were formed at low temperatures at which water exists as solid ice

    Engineering-Level Model Atmospheres for Titan and Neptune

    No full text

    Infrared (0.83–5.1 ÎŒm) photometry of Phoebe from the Cassini Visual Infrared Mapping Spectrometer

    No full text
    Three weeks prior to the commencement of Cassini's 4 year tour of the saturnian system, the spacecraft executed a close flyby of the outer satellite Phoebe. The infrared channel of the Visual Infrared Mapping Spectrometer (VIMS) obtained images of reflected light over the 0.83–5.1 ÎŒm spectral range with an average spectral resolution of 16.5 nm, spatial resolution up to 2 km, and over a range of solar phase angles not observed before. These images have been analyzed to derive fundamental photometric parameters including the phase curve and phase integral, spectral geometric albedo, bolometric Bond albedo, and the single scattering albedo. Physical properties of the surface, including macroscopic roughness and the single particle phase function, have also been characterized. Maps of normal reflectance show the existence of two major albedo regimes in the infrared, with gradations between the two regimes and much terrain with substantially higher albedos. The phase integral of Phoebe is 0.29±0.03, with no significant wavelength dependence. The bolometric Bond albedo is 0.023±007. We find that the surface of Phoebe is rough, with a mean slope angle of 33°. The satellite's surface has a substantial forward scattering component, suggesting that its surface is dusty, perhaps from a history of outgassing. The spectrum of Phoebe is best matched by a composition including water ice, amorphous carbon, iron-bearing minerals, carbon dioxide, and Triton tholin. The characteristics of Phoebe suggest that it originated outside the saturnian system, perhaps in the Kuiper Belt, and was captured on its journey inward, as suggested by Johnson and Lunine (2005)

    Saturn's Titan: Cassini VIMS reports regional reflectance change consistent with surface activity

    Get PDF
    The near-infrared reflectance of a 73,000 km2 area on Titan changed between July 2004 and March of 2006. The reflectance of the region (latitude 26S, longitude 78W) increased twofold between July 2004 and March-April 2005. It then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again to a new maximum. It then declined for the next three months. Detailed analyses indicate that the brightenings are a surface phenomenon, making these the first changes seen on Titan’s surface. The spectral differences between the region and its surroundings rule out the ices of H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of ammoniated materials. NH3 has been proposed as a constituent of Titan’s interior but not its surface or atmosphere. This transitory NH3 spectral signature is consistent with occasional effusion events in which juvenile ammonia is brought to the surface. Its decomposition may feed nitrogen to the atmosphere. The size of the region suggests it may exceed the size of the largest active volcanic areas in the solar system
    • 

    corecore