59 research outputs found

    Alteration of Forest Structure Modifies the Distribution of Scale Insect, Stigmacoccus garmilleri, in Mexican Tropical Montane Cloud Forests

    Get PDF
    Stigmacoccus garmilleri Foldi (Hemiptera: Margarodidae) is an ecologically important honeydew-producing scale insect associated with oak trees (Quercus spp.) in highland forests of Veracruz, Mexico. The honeydew exudates of S. garmilleri serve as a significant nutrient source to many species of birds, insects, and sooty molds. Oak trees found in the forest interior, forest edge, and those scattered in pasture areas support scale insect colonies, though the pattern of insect infestations on trees within these varying landscape types has not been elucidated. This study aims to describe the distribution of scale insect infestation and any distinctions in honeydew production based on tree location. Scale insect density, honeydew volume, and sugar concentration were surveyed throughout a continuous landscape that included both patches of forest and scattered pasture trees. In addition, the anal filament through which the honeydew drop is secreted was also measured and was experimentally removed to test and measure regrowth. Scale insect densities on tree trunks were greatest on pasture trees, while intermediate densities were found on trees at the forest edge, and low densities on interior forest trees, suggesting that trees in disturbed areas are more susceptible to scale insect infestation. Trees with small diameters at breast height had significantly higher insect densities than trees with medium to large diameters. Trunk aspect (North, South, East, and West) was not a significant determinant of scale insect density. In forested areas higher densities of scale insects were found at three meters height in comparison to lower heights. Sugar concentrations and drop volumes of honeydew in forest and pasture areas were not significantly different. However, scale-insect anal tubes/filaments were significantly longer in pasture than they were in forests. Sugar concentrations of honeydew appeared to be positively correlated with temperature and negatively correlated with relative humidity. Experiments indicated that anal filaments could grow approximately 4 mm every 24 hours, and average tube growth was significantly faster in pasture than in forest, suggesting that there may be a physiological effect on the insect due to landscape disturbance. The results obtained in this study describe the increases in scale insect infestation of trees with forest disturbance. The effect of these increased scale insect densities on the host tree physiology is still to be resolved

    Accelerated Evolution of Mitochondrial but Not Nuclear Genomes of Hymenoptera: New Evidence from Crabronid Wasps

    Get PDF
    Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes

    Individuals with Fear of Blushing Explicitly and Automatically Associate Blushing with Social Costs

    Get PDF
    To explain fear of blushing, it has been proposed that individuals with fear of blushing overestimate the social costs of their blushing. Current information-processing models emphasize the relevance of differentiating between more automatic and more explicit cognitions, as both types of cognitions may independently influence behavior. The present study tested whether individuals with fear of blushing expect blushing to have more negative social consequences than controls, both on an explicit level and on a more automatic level. Automatic associations between blushing and social costs were assessed in a treatment-seeking sample of individuals with fear of blushing who met DSM-IV criteria for social anxiety disorder (n = 49) and a non-anxious control group (n = 27) using a single-target Implicit Association Test (stIAT). In addition, participants’ explicit expectations about the social costs of their blushing were assessed. Individuals with fear of blushing showed stronger associations between blushing and negative outcomes, as indicated by both stIAT and self-report. The findings support the view that automatic and explicit associations between blushing and social costs may both help to enhance our understanding of the cognitive processes that underlie fear of blushing

    Prediction of social structure and genetic relatedness in colonies of the facultative polygynous stingless bee Melipona bicolor (Hymenoptera, Apidae)

    Get PDF
    Stingless bee colonies typically consist of one single-mated mother queen and her worker offspring. The stingless bee Melipona bicolor (Hymenoptera: Apidae) shows facultative polygyny, which makes this species particularly suitable for testing theoretical expectations concerning social behavior. In this study, we investigated the social structure and genetic relatedness among workers from eight natural and six manipulated colonies of M. bicolor over a period of one year. The populations of M. bicolor contained monogynous and polygynous colonies. The estimated genetic relatedness among workers from monogynous and polygynous colonies was 0.75 ± 0.12 and 0.53 ± 0.16 (mean ± SEM), respectively. Although the parental genotypes had significant effects on genetic relatedness in monogynous and polygynous colonies, polygyny markedly decreased the relatedness among nestmate workers. Our findings also demonstrate that polygyny in M. bicolor may arise from the adoption of related or unrelated queens

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    An Evaluation of Formal Experimental Design Procedures for Hydrocyclone Modelling

    No full text

    Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases

    No full text
    Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes
    corecore