4,362 research outputs found
Advanced modulation technology development for earth station demodulator applications
The purpose of this contract was to develop a high rate (200 Mbps), bandwidth efficient, modulation format using low cost hardware, in 1990's technology. The modulation format chosen is 16-ary continuous phase frequency shift keying (CPFSK). The implementation of the modulation format uses a unique combination of a limiter/discriminator followed by an accumulator to determine transmitted phase. An important feature of the modulation scheme is the way coding is applied to efficiently gain back the performance lost by the close spacing of the phase points
The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk
Changes in the physicochemical properties and distribution of constituents in skim milk during microfiltration (MF) at low temperature influence filtration performance and product composition. In this study, the influence of processing temperature within the cold MF range (4, 8 and 12 °C) on filtration performance, fouling and partitioning of proteins was investigated. MF at 4 °C required the greatest energy input due to the significantly higher (p < 0.05) viscosity of feed and retentate streams, compared to processing at 8 and 12 °C. The greatest and lowest extents of reversible and irreversible fouling during MF were observed on filtration at 12 and 4 °C, respectively. Chemical analysis of the cleaning solutions post-processing demonstrated that protein was the major foulant; the lowest protein content in the recovered cleaning solutions (50 °C water and 55 °C alkali) was measured after MF at 4 °C. The concentration of β-casein, β-lactoglobulin and α-lactalbumin in the permeate all decreased throughout MF, due to fouling of the membrane. The greatest decrease in concentration of β-casein in the permeate during MF was observed at 12 °C (18.1%) followed by 8 °C (17.1%) and 4 °C (13.6%). The results of this study provide valuable information on processing efficiency (i.e., energy consumption and protein yield) and membrane fouling during the processing of skim milk in the cold MF range
Application of a prioritisation scheme for seismic intervention in schools buildings in Italy
A risk management framework has recently been developed to assign priorities for the rehabilitation of school buildings in Italy, and to give timescales within which retrofit or demolition must take place. Since it is not practical to carry out a detailed assessment of the 60,000 Italian state and public schools, the framework is a multiple-level procedure which aims to identify the highest-risk buildings based on filters of increasing detail, and reduces the size of the building inventory at each step. The first risk ranking is based on a strength deficit, which measures the difference between the current design forces defined for the building site and an estimation of the level of seismic resistance which was required at the time of design. The second ranking is based on lateral strength calculations that are already available for a large portion of the Italian masonry building stock, and that are obtained from a survey form that is familiar to Italian engineers. Finally, a simplified displacement-based methodology is used to give a more accurate assessment of seismic risk based on a limited amount of geometrical and material data. The final assessment leads to a capacity ratio and a risk rating, which are used within a transparent procedure to assign priorities for seismic intervention, and timescales within which detailed assessment leading to retrofit or demolition must take place. The first step of the methodology has been applied herein to the school building stock within two Regions in Italy and preliminary results are presented
Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus
Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny
Phaselocked patterns and amplitude death in a ring of delay coupled limit cycle oscillators
We study the existence and stability of phaselocked patterns and amplitude
death states in a closed chain of delay coupled identical limit cycle
oscillators that are near a supercritical Hopf bifurcation. The coupling is
limited to nearest neighbors and is linear. We analyze a model set of discrete
dynamical equations using the method of plane waves. The resultant dispersion
relation, which is valid for any arbitrary number of oscillators, displays
important differences from similar relations obtained from continuum models. We
discuss the general characteristics of the equilibrium states including their
dependencies on various system parameters. We next carry out a detailed linear
stability investigation of these states in order to delineate their actual
existence regions and to determine their parametric dependence on time delay.
Time delay is found to expand the range of possible phaselocked patterns and to
contribute favorably toward their stability. The amplitude death state is
studied in the parameter space of time delay and coupling strength. It is shown
that death island regions can exist for any number of oscillators N in the
presence of finite time delay. A particularly interesting result is that the
size of an island is independent of N when N is even but is a decreasing
function of N when N is odd.Comment: 23 pages, 12 figures (3 of the figures in PNG format, separately from
TeX); minor additions; typos correcte
Deep Shape Matching
We cast shape matching as metric learning with convolutional networks. We
break the end-to-end process of image representation into two parts. Firstly,
well established efficient methods are chosen to turn the images into edge
maps. Secondly, the network is trained with edge maps of landmark images, which
are automatically obtained by a structure-from-motion pipeline. The learned
representation is evaluated on a range of different tasks, providing
improvements on challenging cases of domain generalization, generic
sketch-based image retrieval or its fine-grained counterpart. In contrast to
other methods that learn a different model per task, object category, or
domain, we use the same network throughout all our experiments, achieving
state-of-the-art results in multiple benchmarks.Comment: ECCV 201
A planetary nervous system for social mining and collective awareness
We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac
Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate
The Atacama B-Mode Search (ABS) instrument is a cryogenic (10 K)
crossed-Dragone telescope located at an elevation of 5190 m in the Atacama
Desert in Chile that observed for three seasons between February 2012 and
October 2014. ABS observed the Cosmic Microwave Background (CMB) at large
angular scales () to limit the B-mode polarization spectrum around
the primordial B-mode peak from inflationary gravity waves at .
The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers.
They are coupled to orthogonal polarizations from a planar ortho-mode
transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature,
rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move
the signal band away from atmospheric noise, allowing for the recovery of
large angular scales. We discuss how the signal at the second harmonic of the
HWP rotation frequency can be used for data selection and for monitoring the
detector responsivities.Comment: 7 pages, 3 figures, conference proceedings submitted to the Journal
of Low Temperature Detector
- …