196 research outputs found

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 +/- 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of +/- 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Spatial behavior of domestic cats and the effects of outdoor access restrictions and interventions to reduce predation of wildlife

    Get PDF
    Domestic cats (Felis catus) that roam outdoors have increased exposure to hazards to their health and welfare. Outdoor cats can themselves present a hazard to biodiversity conservation and wild animal welfare. Approaches to reducing predation of wildlife by cats might also bring benefits to cats by reducing their roaming and associated risks. We investigated ranging behaviors of domestic cats that regularly captured wild prey, and that had restricted or unrestricted outdoor access. We tested whether interventions aimed at reducing predation also affected their spatial behavior. We evaluated cat bells, Birdsbesafe collar covers, using a “puzzle feeder”, provision of meat-rich food, object play, and a control group. Seventy-two cats in 48 households in England completed the 12-week trial in spring 2019. Home ranges were small (median AKDE95 = 1.51 ha). Cats with unrestricted outdoor access had 75% larger home ranges, 31% greater daily distances traveled, and reached 46% greater maximum distances from home, than cats with restricted outdoor access. None of the treatments intended to reduce predation affected cat ranges or distances traveled. While owners might use interventions to reduce predation, the only effective means of reducing cat roaming and associated exposure to outdoor hazards was restriction of outdoor access

    Flagship individuals in biodiversity conservation

    Get PDF
    Flagship species are an important tool for mobilizing support for conservation. Here, we extend this concept to include individual organisms, whose characteristics, fates, and connections to people can garner public attention, attract conservation support, and spur activism. Flagship individuals typically share a similar suite of characteristics, including (1) species-level traits associated with charisma; (2) individual traits that are unique or distinctive; (3) a high degree of exposure to humans; and (4) a known, noteworthy life history or fate. The interplay between these characteristics and human agency establishes unique connections between flagship individuals and people, and generates widespread media attention. We discuss how the selection and promotion of flagship individuals can inspire empathy and, ultimately, conservation action. Finally, we identify the limitations of the flagship individual approach, while arguing that, if carefully and strategically implemented, it has the potential to produce substantial benefits for conservation policy and practice

    Explaining people’s perceptions of invasive alien species:A conceptual framework

    Get PDF
    Human perceptions of nature and the environment are increasingly being recognised as important for environmental management and conservation. Understanding people's perceptions is crucial for understanding behaviour and developing effective management strategies to maintain, preserve and improve biodiversity, ecosystem services and human well-being. As an interdisciplinary team, we produced a synthesis of the key factors that influence people's perceptions of invasive alien species, and ordered them in a conceptual framework. In a context of considerable complexity and variation across time and space, we identified six broad-scale dimensions: (1) attributes of the individual perceiving the invasive alien species; (2) characteristics of the invasive alien species itself; (3) effects of the invasion (including negative and positive impacts, i.e. benefits and costs); (4) socio-cultural context; (5) landscape context; and (6) institutional and policy context. A number of underlying and facilitating aspects for each of these six overarching dimensions are also identified and discussed. Synthesising and understanding the main factors that influence people's perceptions is useful to guide future research, to facilitate dialogue and negotiation between actors, and to aid management and policy formulation and governance of invasive alien species. This can help to circumvent and mitigate conflicts, support prioritisation plans, improve stakeholder engagement platforms, and implement control measures

    Hepatic and adipose phenotype in Alström syndrome

    Get PDF
    BACKGROUND AND AIMS: Alström syndrome (AS) is a recessive monogenic syndrome characterized by obesity, extreme insulin resistance and multi-organ fibrosis. Despite phenotypically being high risk of non-alcoholic fatty liver disease (NAFLD), there is a lack of data on the extent of fibrosis in the liver and its close links to adipose in patients with AS. Our aim was to characterize the hepatic and adipose phenotype in patients with AS. METHODS: Observational cohort study with comprehensive assessment of metabolic liver phenotype including liver elastography (Fibroscan® ), serum Enhanced Liver Fibrosis (ELF) Panel and liver histology. In addition, abdominal adipose histology and gene expression was assessed. We recruited 30 patients from the UK national AS clinic. A subset of six patients underwent adipose biopsies which was compared with control tissue from nine healthy participants. RESULTS: Patients were overweight/obese (BMI 29.3 (25.95-34.05) kg/m2 ). A total of 80% (24/30) were diabetic; 74% (20/27) had liver ultrasound scanning suggestive of NAFLD. As judged by the ELF panel, 96% (24/25) were categorized as having fibrosis and 10/21 (48%) had liver elastography consistent with advanced liver fibrosis/cirrhosis. In 7/8 selected cases, there was evidence of advanced NAFLD on liver histology. Adipose tissue histology showed marked fibrosis as well as disordered pro-inflammatory and fibrotic gene expression profiles. CONCLUSIONS: NAFLD and adipose dysfunction are common in patients with AS. The severity of liver disease in our cohort supports the need for screening of liver fibrosis in AS.Alström UKThis is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/liv.1316

    Neurochemical Metabolomics Reveals Disruption to Sphingolipid Metabolism Following Chronic Haloperidol Administration

    Get PDF
    Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use. Brain tissue was collected following microwave tissue fixation to arrest metabolism and extracted metabolites were assessed using both liquid and gas chromatography mass spectrometry (MS). Over 300 unique compounds were identified across MS platforms. Haloperidol was found to be present in all test samples and not in controls, indicating experimental validity. Twenty-one compounds differed significantly between test and control groups at the p < 0.05 level. Top compounds were robust to analytical method, also being identified via partial least squares discriminant analysis. Four compounds (sphinganine, N-acetylornithine, leucine and adenosine diphosphate) survived correction for multiple testing in a non-parametric analysis using false discovery rate threshold < 0.1. Pathway analysis of nominally significant compounds (p < 0.05) revealed significant findings for sphingolipid metabolism (p = 0.02) and protein biosynthesis (p = 0.03). Altered sphingolipid metabolism is suggestive of disruptions to myelin. This interpretation is supported by our observation of elevated N-acetylaspartylglutamate in the haloperidol-treated mice (p = 0.004), a marker previously associated with demyelination. This study further demonstrates the utility of murine neurochemical metabolomics as a method to advance understanding of CNS drug effects

    The Intriguing Effects of Substituents in the N-Phenethyl Moiety of Norhydromorphone: A Bifunctional Opioid from a Set of “Tail Wags Dog” Experiments

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.(−)-N-Phenethyl analogs of optically pure N-norhydromorphone were synthesized and pharmacologically evaluated in several in vitro assays (opioid receptor binding, stimulation of [35S]GTPγS binding, forskolin-induced cAMP accumulation assay, and MOR-mediated β-arrestin recruitment assays). “Body” and “tail” interactions with opioid receptors (a subset of Portoghese’s message-address theory) were used for molecular modeling and simulations, where the “address” can be considered the “body” of the hydromorphone molecule and the “message” delivered by the substituent (tail) on the aromatic ring of the N-phenethyl moiety. One compound, N-p-chloro-phenethynorhydromorphone ((7aR,12bS)-3-(4-chlorophenethyl)-9-hydroxy-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 2i), was found to have nanomolar binding affinity at MOR and DOR. It was a potent partial agonist at MOR and a full potent agonist at DOR with a δ/μ potency ratio of 1.2 in the ([35S]GTPγS) assay. Bifunctional opioids that interact with MOR and DOR, the latter as agonists or antagonists, have been reported to have fewer side-effects than MOR agonists. The p-chlorophenethyl compound 2i was evaluated for its effect on respiration in both mice and squirrel monkeys. Compound 2i did not depress respiration (using normal air) in mice or squirrel monkeys. However, under conditions of hypercapnia (using air mixed with 5% CO2), respiration was depressed in squirrel monkeys.NIDA grant P30 DA13429NIDA grant DA039997NIDA grant DA018151NIDA grant DA035857NIDA grant DA047574NIH Intramural Research Programs of the National Institute on Drug AbuseNational Institute of Alcohol Abuse and AlcoholismNIH Intramural Research Programs of the National Institute on Drug AbuseNIH Intramural Research Program through the Center for Information TechnologyNIH Intramural Research Programs of the National Institute on Drug Abus
    corecore