5,262 research outputs found

    Some issues concerning Large-Eddy Simulation of inertial particle dispersion in turbulent bounded flows

    Full text link
    The problem of an accurate Eulerian-Lagrangian modeling of inertial particle dispersion in Large Eddy Simulation (LES) of turbulent wall-bounded flows is addressed. We run Direct Numerical Simulation (DNS) for turbulent channel flow at shear Reynolds numbers equal to 150 and 300 and corresponding a-priori and a-posteriori LES on differently coarse grids. We then tracked swarms of different inertia particles and we examined the influence of filtering and of Sub-Grid Scale (SGS) modeling for the fluid phase on particle velocity and concentration statistics. We also focused on how particle preferential segregation is predicted by LES. Results show that even ``well-resolved'' LES is unable to reproduce the physics as demonstrated by DNS, both for particle accumulation at the wall and for particle preferential segregation. Inaccurate prediction is observed for the entire range of particles considered in this study, even when the particle response time is much larger than the flow timescales not resolved in LES. Both a-priori and a-posteriori tests indicate that recovering the level of fluid and particle velocity fluctuations is not enough to have accurate prediction of near-wall accumulation and local segregation. This may suggest that reintroducing the correct amount of higher-order moments of the velocity fluctuations is also a key point for SGS closure models for the particle equation. Another important issue is the presence of possible flow Reynolds number effects on particle dispersion. Our results show that, in small Reynolds number turbulence and in the case of heavy particles, the shear fluid velocity is a suitable scaling parameter to quantify these effects

    Clustering and collisions of heavy particles in random smooth flows

    Get PDF
    Finite-size impurities suspended in incompressible flows distribute inhomogeneously, leading to a drastic enhancement of collisions. A description of the dynamics in the full position-velocity phase space is essential to understand the underlying mechanisms, especially for polydisperse suspensions. These issues are here studied for particles much heavier than the fluid by means of a Lagrangian approach. It is shown that inertia enhances collision rates through two effects: correlation among particle positions induced by the carrier flow and uncorrelation between velocities due to their finite size. A phenomenological model yields an estimate of collision rates for particle pairs with different sizes. This approach is supported by numerical simulations in random flows.Comment: 12 pages, 9 Figures (revTeX 4) final published versio

    A Schottky/2-DEG varactor diode for millimeter and submillimeter wave multiplier applications

    Get PDF
    A new Schottky diode is investigated for use as a multiplier element in the millimeter and submillimeter wavelength regions. The new diode is based on the Schottky contact at the edge of a 2-dimensional electron gas (2-DEG). As a negative voltage is applied to the Schottky contact, the depletion layer between the Schottky contact and the 2-DEG expands and the junction capacitance decreases, resulting in a nonlinear capacitance-voltage characteristic. In this paper, we outline the theory, design, fabrication, and evaluation of the new device. Recent results include devices having cutoff frequencies of 1 THz and above. Preliminary multiplier results are also presented

    The decay of Hill's vortex in a rotating flow

    Get PDF
    Hill's vortex is a classical solution of the incompressible Euler equations which consists of an axisymmetric spherical region of constant vorticity matched to an irrotational external flow. This solution has been shown to be a member of a one-parameter family of steady vortex rings and as such is commonly used as a simple analytic model for a vortex ring. Here, we model the decay of a Hill's vortex in a weakly rotating flow due to the radiation of inertial waves. We derive analytic results for the modification of the vortex structure by rotational effects and the generated wave field using an asymptotic approach where the rotation rate, or inverse Rossby number, is taken to be small. Using this model, we predict the decay of the vortex speed and radius by combining the flux of vortex energy to the wave field with the conservation of peak vorticity. We test our results against numerical simulations of the full axisymmetric Navier–Stokes equations

    Statistical properties of an ideal subgrid-scale correction for Lagrangian particle tracking in turbulent channel flow

    Full text link
    One issue associated with the use of Large-Eddy Simulation (LES) to investigate the dispersion of small inertial particles in turbulent flows is the accuracy with which particle statistics and concentration can be reproduced. The motion of particles in LES fields may differ significantly from that observed in experiments or direct numerical simulation (DNS) because the force acting on the particles is not accurately estimated, due to the availability of the only filtered fluid velocity, and because errors accumulate in time leading to a progressive divergence of the trajectories. This may lead to different degrees of inaccuracy in the prediction of statistics and concentration. We identify herein an ideal subgrid correction of the a-priori LES fluid velocity seen by the particles in turbulent channel flow. This correction is computed by imposing that the trajectories of individual particles moving in filtered DNS fields exactly coincide with the particle trajectories in a DNS. In this way the errors introduced by filtering into the particle motion equations can be singled out and analyzed separately from those due to the progressive divergence of the trajectories. The subgrid correction term, and therefore the filtering error, is characterized in the present paper in terms of statistical moments. The effects of the particle inertia and of the filter type and width on the properties of the correction term are investigated.Comment: 15 pages,24 figures. Submitted to Journal of Physics: Conference Serie

    Heavy particle concentration in turbulence at dissipative and inertial scales

    Get PDF
    Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale τη\tau_\eta. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second part of the paper completely revise

    Exploring the impact of Osteogenesis Imperfecta on families: A mixed-methods systematic review

    Get PDF
    Background: Osteogenesis Imperfecta (OI) is a rare genetic condition whose key characteristic is increased bone fragility. OI has the potential to impact upon all family members, making it important to consider the challenges families face, how they cope and their support needs as the affected individual moves from childhood through to adult life. / Objective: To conduct a mixed-methods systematic review investigating the experiences of families when a family member is affected with OI. / Methods: A systematic search of seven electronic databases, relevant patient organisation websites and reference lists was conducted. Data extraction was performed for all studies that met the eligibility and quality criteria. Results were synthesised following the principles of thematic analysis. / Results: One mixed-method, six qualitative and six quantitative studies were included in the review. Three overarching themes were identified through thematic analysis: Impact of OI on the psychosocial wellbeing of families, impact on family life and evolving roles and relationships. Fear of fractures and the uncertainty of when the next fracture will occur are key issues that permeate all areas of family life and impact upon all family members. / Conclusion: The experiences, coping strategies and support needs of families affected by OI were highly variable and changed over time. Future research should address the need for adaptive health and education interventions that support all family members

    Better, Faster, Stronger: Integrating Archives Processing and Technical Services

    Get PDF
    The University of Denver’s Penrose Library implemented a consolidated cataloging and archives processing unit for all materials, taking advantage of the structure, workflow design, and staff resources that were already in place for library-wide materials processing: acquisitions, cataloging, binding, and stacks maintenance. The objective of Penrose Library’s integrated approach was to efficiently create metadata that allow searches based on subject relevance rather than on collection provenance. The library streamlined archives processing by integrating digital content creation and management into the materials processing workflow. The result is a flexible, sustainable, and scalable model for archives processing that utilizes existing staff by enhancing and extending the skills of both experienced monographs catalogers and archivists
    • …
    corecore