720 research outputs found

    Inverse problem for the Landau-Zener effect

    Full text link
    We consider the inverse Landau-Zener problem which consists in finding the energy-sweep functions W(t)=E1(t)-E2(t) resulting in the required time dependences of the level populations for a two-level system crossing the resonance one or more times during the sweep. We find sweep functions of particular forms that let manipulate the system in a required way, including complete switching from the state 1 to the state 2 and preparing the system at the exact ground and excited states at resonance.Comment: 7 EPL pages, 6 figure

    Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions

    Full text link
    At impact energies ∌>1 \stackrel{>}{\sim}1 GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. In order to treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically high collision energies this model leads to an exact transition amplitude and is very well suited to describe the projectile-electron excitation and loss at energies above a few GeV/u. In particular, by considering a number of examples we demonstrate advantages of this model over the first Born approximation at impact energies ∌1\sim 1--30 GeV/u, which are of special interest for atomic physics experiments at the future GSI facilities.Comment: 14 pages, 5 figure

    A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO

    Get PDF
    By exploiting data from the STEREO/heliospheric imagers (HI) we extend a well-established technique developed for coronal analysis by producing time-elongation plots that reveal the nature of solar transient activity over a far more extensive region of the heliosphere than previously possible from coronagraph images. Despite the simplicity of these plots, their power in demonstrating how the plethora of ascending coronal features observed near the Sun evolve as they move antisunward is obvious. The time-elongation profile of a transient tracked by HI can, moreover, be used to establish its angle out of the plane-of-the-sky; an illustration of such analysis reveals coronal mass ejection material that can be clearly observed propagating out to distances beyond 1AU. This work confirms the value of the time-elongation format in identifying/characterising transient activity in the inner heliosphere, whilst also validating the ability of HI to continuously monitor solar ejecta out to and beyond 1A

    Torsional fluctuations in columnar DNA assemblies

    Full text link
    In columnar assemblies of helical bio-molecules the azimuthal degrees of freedom, i.e. rotations about the long axes of molecules, may be important in determining the structure of the assemblies especially when the interaction energy between neighbouring molecules explicitly depends on their relative azimuthal orientations. For DNA this leads to a rich variety of mesophases for columnar assemblies, each categorized by a specific azimuthal ordering. In a preceding paper [A. Wynveen, D. J. Lee, and A. A. Kornyshev, Eur. Phys. J. E, 16, 303 (2005)] a statistical mechanical theory was developed for the assemblies of torsionally rigid molecues in order to determine how thermal fluctuations influence the structure of these mesophases. Here we extend this theory by including torsional fluctuations of the molecules, where a DNA molecule may twist about its long axis at the cost of torsional elastic energy. Comparing this with the previous study, we find that inclusion of torsional fluctuations further increases the density at which the transition between the hexagonal structure and the predicted rhombic phase occurs and reduces the level of distortion in the rhombic phase. As X-ray diffraction may probe the 2-D lattice structure of such assemblies and provide information concerning the underlying interaction between molecules, we have also calculated correlation functions for the azimuthal ordering which are manifest in an x-ray scattering intensity profiles.Comment: 33 pages, 8 figure

    Participatory Militias: An Analysis of an Armed Movement's Online Audience

    Full text link
    Armed groups of civilians known as "self-defense forces" have ousted the powerful Knights Templar drug cartel from several towns in Michoacan. This militia uprising has unfolded on social media, particularly in the "VXM" ("Valor por Michoacan," Spanish for "Courage for Michoacan") Facebook page, gathering more than 170,000 fans. Previous work on the Drug War has documented the use of social media for real-time reports of violent clashes. However, VXM goes one step further by taking on a pro-militia propagandist role, engaging in two-way communication with its audience. This paper presents a descriptive analysis of VXM and its audience. We examined nine months of posts, from VXM's inception until May 2014, totaling 6,000 posts by VXM administrators and more than 108,000 comments from its audience. We describe the main conversation themes, post frequency and relationships with offline events and public figures. We also characterize the behavior of VXM's most active audience members. Our work illustrates VXM's online mobilization strategies, and how its audience takes part in defining the narrative of this armed conflict. We conclude by discussing possible applications of our findings for the design of future communication technologies.Comment: Participatory Militias: An Analysis of an Armed Movement's Online Audience. Saiph Savage, Andres Monroy-Hernandez. CSCW: ACM Conference on Computer-Supported Cooperative Work 201

    The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts

    Get PDF
    Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al

    Can the Existence of Dark Energy Be Directly Detected?

    Full text link
    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?Comment: 4 page

    Inelastic Processes in the Collision of Relativistic Highly Charged Ions with Atoms

    Get PDF
    A general expression for the cross sections of inelastic collisions of fast (including relativistic) multicharged ions with atoms which is based on the genelazition of the eikonal approximation is derived. This expression is applicable for wide range of collision energy and has the standard nonrelativistic limit and in the ultrarelativistic limit coincides with the Baltz's exact solution ~\cite{art13} of the Dirac equation. As an application of the obtained result the following processes are calculated: the excitation and ionization cross sections of hydrogenlike atom; the single and double excitation and ionization of heliumlike atom; the multiply ionization of neon and argon atoms; the probability and cross section of K-vacancy production in the relativistic U92+−U91+U^{92+} - U^{91+} collision. The simple analytic formulae for the cross sections of inelastic collisions and the recurrence relations between the ionization cross sections of different multiplicities are also obtained. Comparison of our results with the experimental data and the results of other calculations are given.Comment: 25 pages, latex, 7 figures avialable upon request,submitted to PR

    Simultaneous loss and excitation of projectile electrons in relativistic collisions of U90+^{90+}(1s2^2) ions with atoms

    Full text link
    We study relativistic collisions between helium-like uranium ions initially in the ground state and atoms in which, in a single collision event, one of the electrons of the ion is emitted and the other is transferred into an excited state of the residual hydrogen-like ion. We consider this two-electron process at not very high impact energies, where the action of the atom on the electrons of the ion can be well approximated as occurring solely due to the interaction with the nucleus of the atom and, hence, the process can be regarded as a four-body problem. Using the independent electron model we show that a very substantial improvement in the calculated cross sections is obtained if, instead of the first order approximation, the relativistic symmetric eikonal and continuum-distorted-wave-eikonal-initial-state models are employed to describe the single-electron probabilities for the excitation and loss, respectively.Comment: 12 pages, 2 figures, submitted to J.Phys.
    • 

    corecore