160 research outputs found

    Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells

    Get PDF
    The Sp/Kriippel-like factor (Sp/KIf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Kruppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Kruppel-like factor (Eklf/Kif1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, la, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo

    Ferroelectric precursor behavior in PbSc0.5Ta0.5O3 detected by field-induced resonant piezoelectric spectroscopy

    Get PDF
    A novel experimental technique, resonant piezoelectric spectroscopy (RPS), has been applied to investigate polar precursor effects in highly (65%) B-site ordered PbSc0.5Ta0.5O3 (PST), which undergoes a ferroelectric phase transition near 300 K. The cubic-rhombohedral transition is weakly first order, with a coexistence interval of ∼4 K, and is accompanied by a significant elastic anomaly over a wide temperature interval. Precursor polarity in the cubic phase was detected as elastic vibrations generated by local piezoelectric excitations in the frequency range 250–710 kHz. The RPS resonance frequencies follow exactly the frequencies of elastic resonances generated by conventional resonant ultrasound spectroscopy (RUS) but RPS signals disappear on heating beyond an onset temperature, Tonset, of 425 K. Differences between the RPS and RUS responses can be understood if the PST structure in the precursor regime between Tonset and the transition point, Ttrans=300 K, has locally polar symmetry even while it remains macroscopically cubic. It is proposed that this precursor behavior could involve the development of a tweed microstructure arising by coupling between strain and multiple order parameters, which can be understood from the perspective of Landau theory. As a function of temperature the transition is driven by the polar displacement P and the order parameter for cation ordering on the crystallographic B site Qod. Results in the literature show that, as a function of pressure, there is a separate instability driven by octahedral tilting for which the assigned order parameter is Q. The two mainly displacive order parameters, P and Q, are unfavorably coupled via a biquadratic term Q2P2, and complex tweedlike fluctuations in the precursor regime would be expected to combine aspects of all the order parameters. This would be different from the development of polar nanoregions, which are more usually evoked to explain relaxor ferroelectric behavior, such as occurs in PST with a lower degree of B-site order

    Ferroelectric precursor behavior in PbSc0.5Ta0.5O3 detected by field-induced resonant piezoelectric spectroscopy

    Get PDF
    A novel experimental technique, resonant piezoelectric spectroscopy (RPS), has been applied to investigate polar precursor effects in highly (65%) B-site ordered PbSc0.5Ta0.5O3 (PST), which undergoes a ferroelectric phase transition near 300 K. The cubic-rhombohedral transition is weakly first order, with a coexistence interval of ∼4 K, and is accompanied by a significant elastic anomaly over a wide temperature interval. Precursor polarity in the cubic phase was detected as elastic vibrations generated by local piezoelectric excitations in the frequency range 250–710 kHz. The RPS resonance frequencies follow exactly the frequencies of elastic resonances generated by conventional resonant ultrasound spectroscopy (RUS) but RPS signals disappear on heating beyond an onset temperature, Tonset, of 425 K. Differences between the RPS and RUS responses can be understood if the PST structure in the precursor regime between Tonset and the transition point, Ttrans=300 K, has locally polar symmetry even while it remains macroscopically cubic. It is proposed that this precursor behavior could involve the development of a tweed microstructure arising by coupling between strain and multiple order parameters, which can be understood from the perspective of Landau theory. As a function of temperature the transition is driven by the polar displacement P and the order parameter for cation ordering on the crystallographic B site Qod. Results in the literature show that, as a function of pressure, there is a separate instability driven by octahedral tilting for which the assigned order parameter is Q. The two mainly displacive order parameters, P and Q, are unfavorably coupled via a biquadratic term Q2P2, and complex tweedlike fluctuations in the precursor regime would be expected to combine aspects of all the order parameters. This would be different from the development of polar nanoregions, which are more usually evoked to explain relaxor ferroelectric behavior, such as occurs in PST with a lower degree of B-site order

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    Longitudinal cohort study investigating neurodevelopmental and socioemotional outcomes in school-entry aged children after open heart surgery in Australia and New Zealand: the NITRIC follow-up study protocol

    Full text link
    Introduction: Despite growing awareness of neurodevelopmental impairments in children with congenital heart disease (CHD), there is a lack of large, longitudinal, population-based cohorts. Little is known about the contemporary neurodevelopmental profile and the emergence of specific impairments in children with CHD entering school. The performance of standardised screening tools to predict neurodevelopmental outcomes at school age in this high-risk population remains poorly understood. The NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial randomised 1371 children <2 years of age, investigating the effect of gaseous nitric oxide applied into the cardiopulmonary bypass oxygenator during heart surgery. The NITRIC follow-up study will follow this cohort annually until 5 years of age to assess outcomes related to cognition and socioemotional behaviour at school entry, identify risk factors for adverse outcomes and evaluate the performance of screening tools. Methods and analysis: Approximately 1150 children from the NITRIC trial across five sites in Australia and New Zealand will be eligible. Follow-up assessments will occur in two stages: (1) annual online screening of global neurodevelopment, socioemotional and executive functioning, health-related quality of life and parenting stress at ages 2–5 years; and (2) face-to-face assessment at age 5 years assessing intellectual ability, attention, memory and processing speed; fine motor skills; language and communication; and socioemotional outcomes. Cognitive and socioemotional outcomes and trajectories of neurodevelopment will be described and demographic, clinical, genetic and environmental predictors of these outcomes will be explored. Ethics and dissemination: Ethical approval has been obtained from the Children’s Health Queensland (HREC/20/QCHQ/70626) and New Zealand Health and Disability (21/NTA/83) Research Ethics Committees. The findings will inform the development of clinical decision tools and improve preventative and intervention strategies in children with CHD. Dissemination of the outcomes of the study is expected via publications in peer-reviewed journals, presentation at conferences, via social media, podcast presentations and medical education resources, and through CHD family partners.Trial registration numberThe trial was prospectively registered with the Australian New Zealand Clinical Trials Registry as ‘Gene Expression to Predict Long-Term Neurodevelopmental Outcome in Infants from the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) Study – A Multicentre Prospective Trial’. Trial registration: ACTRN12621000904875

    Beyond outputs: pathways to symmetrical evaluations of university sustainable development partnerships

    Get PDF
    As the United Nations Decade of Education for Sustainable Development (2005–2014) draws to a close, it is timely to review ways in which the sustainable development initiatives of higher education institutions have been, and can be, evaluated. In their efforts to document and assess collaborative sustainable development program outcomes and impacts, universities in the North and South are challenged by similar conundrums that confront development agencies. This article explores pathways to symmetrical evaluations of transnationally partnered research, curricula, and public-outreach initiatives specifically devoted to sustainable development. Drawing on extensive literature and informed by international development experience, the authors present a novel framework for evaluating transnational higher education partnerships devoted to sustainable development that addresses design, management, capacity building, and institutional outreach. The framework is applied by assessing several full-term African higher education evaluation case studies with a view toward identifying key limitations and suggesting useful future symmetrical evaluation pathways. University participants in transnational sustainable development initiatives, and their supporting donors, would be well-served by utilizing an inclusive evaluation framework that is infused with principles of symmetry

    Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice

    Get PDF
    Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage

    Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study

    Get PDF
    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and “hot filtration” experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide–iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure
    corecore