8,056 research outputs found
Dynamics and Steady States in excitable mobile agent systems
We study the spreading of excitations in 2D systems of mobile agents where
the excitation is transmitted when a quiescent agent keeps contact with an
excited one during a non-vanishing time. We show that the steady states
strongly depend on the spatial agent dynamics. Moreover, the coupling between
exposition time () and agent-agent contact rate (CR) becomes crucial to
understand the excitation dynamics, which exhibits three regimes with CR: no
excitation for low CR, an excited regime in which the number of quiescent
agents (S) is inversely proportional to CR, and for high CR, a novel third
regime, model dependent, here S scales with an exponent , with
being the scaling exponent of with CR
Designing novel applications for emerging multimedia technology
Current R&D in media technologies such as Multimedia, Semantic Web and Sensor Web technologies are advancing in a fierce rate and will sure to become part of our important regular items in a 'conventional' technology inventory in near future. While the R&D nature of these technologies means their accuracy, reliability and robustness are not sufficient enough to be used in real world yet, we want to envision now the near-future where these technologies will have matured and used in real applications in order to explore and start shaping many possible new ways these novel technologies could be utilised.
In this talk, some of this effort in designing novel applications that incorporate various media technologies as their backend will be presented. Examples include novel scenarios of LifeLogging application that incorporate automatic structuring of millions of photos passively captured from a SenseCam (wearable digital camera that automatically takes photos triggered by environmental sensors) and an interactive TV application incorporating a number of multimedia tools yet extremely simple and easy to use with a remote control in a lean-back position. The talk will conclude with remarks on how the design of novel applications that have no precedence or existing user base should require somewhat different approach from those suggested and practiced in conventional usability engineering methodology
Standardization of molecular monitoring for chronic myeloid leukemia in Latin America using locally produced secondary cellular calibrators
Residual disease in chronic myeloid leukemia (CML) patients undergoing therapy with tyrosine kinase inhibitors (TKIs) is measured by assessing the quantity of transcripts of the BCR-ABL1 fusion gene in peripheral white blood cells. This analysis is based on reverse-transcription quantitative PCR (RT–qPCR) technology; however, the wide array of methods used worldwide has led to large variation in quantitative BCR-ABL1 measurements, which hamper inter-laboratory comparative studiesFil: Ruiz, María Sol. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Medina, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Tapia, I.. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Mordoh, Jose. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Cross, N. C. P.. Universidad de Southampton Uk; Reino UnidoFil: Larripa, Irene Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Bianchini, Michele. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentin
Zig-zag instability of an Ising wall in liquid crystals
We present a theoretical explanation for the interfacial zigzag instability
that appears in anisotropic systems. Such an instability has been
experimentally highlighted for an Ising wall formed in a nematic liquid crystal
cell under homeotropic anchoring conditions. From an envelope equation,
relevant close to the Freedericksz transition, we have derived an asymptotic
equation describing the interface dynamics in the vicinity of its bifurcation.
The asymptotic limit used accounts for a strong difference between two of the
elastic constants. The model is characterized by a conservative order parameter
which satisfies a Cahn-Hilliard equation. It provides a good qualitative
understanding of the experiments.Comment: 4 pagess, 4 figures, lette
Effect of phonon scattering by surface roughness on the universal thermal conductance
The effect of phonon scattering by surface roughness on the thermal
conductance in mesoscopic systems at low temperatures is calculated using full
elasticity theory. The low frequency behavior of the scattering shows novel
power law dependences arising from the unusual properties of the elastic modes.
This leads to new predictions for the low temperature depression of the thermal
conductance below the ideal universal value. Comparison with the data of Schwab
et al. [Nature 404, 974 (2000)] suggests that surface roughness on a scale of
the width of the thermal pathway is important in the experiment.Comment: 6 pages, 3 figure
ACS Observations of a Strongly Lensed Arc in a Field Elliptical
We report the discovery of a strongly lensed arc system around a field
elliptical galaxy in Hubble Space Telescope (HST) Advanced Camera for Surveys
(ACS) images of a parallel field observed during NICMOS observations of the HST
Ultra-Deep Field. The ACS parallel data comprise deep imaging in the F435W,
F606W, F775W, and F850LP bandpasses. The main arc is at a radius of 1.6 arcsec
from the galaxy center and subtends about 120 deg. Spectroscopic follow-up at
Magellan Observatory yields a redshift z=0.6174 for the lensing galaxy, and we
photometrically estimate z_phot = 2.4\pm0.3 for the arc. We also identify a
likely counter-arc at a radius of 0.6 arcsec, which shows structure similar to
that seen in the main arc. We model this system and find a good fit to an
elliptical isothermal potential of velocity dispersion
\kms, the value expected from the fundamental plane, and some external shear.
Several other galaxies in the field have colors similar to the lensing galaxy
and likely make up a small group.Comment: Accepted for publication in ApJ Letters. 10 pages, 3 figures. Figures
have been degraded to meet size limit; a higher resolution version and
addtional pictures available at http://acs.pha.jhu.edu/~jpb/UDFparc
Machine learning at the interface of structural health monitoring and non-destructive evaluation
While both non-destructive evaluation (NDE) and structural health monitoring (SHM) share the objective of damage detection and identification in structures, they are distinct in many respects. This paper will discuss the differences and commonalities and consider ultrasonic/guided-wave inspection as a technology at the interface of the two methodologies. It will discuss how data-based/machine learning analysis provides a powerful approach to ultrasonic NDE/SHM in terms of the available algorithms, and more generally, how different techniques can accommodate the very substantial quantities of data that are provided by modern monitoring campaigns. Several machine learning methods will be illustrated using case studies of composite structure monitoring and will consider the challenges of high-dimensional feature data available from sensing technologies like autonomous robotic ultrasonic inspection.
This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’
Recommended from our members
Spring School on Language, Music, and Cognition: Organizing Events in Time
The interdisciplinary spring school “Language, music, and cognition: Organizing events in time” was held from February 26 to March 2, 2018 at the Institute of Musicology of the University of Cologne. Language, speech, and music as events in time were explored from different perspectives including evolutionary biology, social cognition, developmental psychology, cognitive neuroscience of speech, language, and communication, as well as computational and biological approaches to language and music. There were 10 lectures, 4 workshops, and 1 student poster session.
Overall, the spring school investigated language and music as neurocognitive systems and focused on a mechanistic approach exploring the neural substrates underlying musical, linguistic, social, and emotional processes and behaviors. In particular, researchers approached questions concerning cognitive processes, computational procedures, and neural mechanisms underlying the temporal organization of language and music, mainly from two perspectives: one was concerned with syntax or structural representations of language and music as neurocognitive systems (i.e., an intrapersonal perspective), while the other emphasized social interaction and emotions in their communicative function (i.e., an interpersonal perspective). The spring school not only acted as a platform for knowledge transfer and exchange but also generated a number of important research questions as challenges for future investigations
- …