270 research outputs found
Comment on the power law in rheological equations
In conformity with the principle of shear reversal, it is proposed that the power law index in the Cross equation relating steady state viscosity to shear rate in semisolid alloy slurries should have a value of 4/3, which is independent of alloy system and the fraction solid
Renormalizing Partial Differential Equations
In this review paper, we explain how to apply Renormalization Group ideas to
the analysis of the long-time asymptotics of solutions of partial differential
equations. We illustrate the method on several examples of nonlinear parabolic
equations. We discuss many applications, including the stability of profiles
and fronts in the Ginzburg-Landau equation, anomalous scaling laws in
reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
Late results of oesophageal and oesophagogastric resection in the treatment of oesophageal cancer
Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs
Single cell spatial interrogation of the immune-structural interactions in COVID −19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis
Alveolar macrophage apoptosis-associated bacterial killing helps prevent murine pneumonia
RATIONALE: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AM) kill bacteria. OBJECTIVES: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. METHODS: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific over-expression of the human anti-apoptotic Mcl-1 protein, a factor upregulated in AM from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. MEASUREMENTS AND MAIN RESULTS: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for > 12 h) overwhelmed initial killing and a second late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late-phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species (mROS) and nitric oxide (NO), whose peak generation coincided with the late-phase of killing. The CD68.hMcl-1 transgene prevented mROS but not NO generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. CONCLUSIONS: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AM to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel host-based antimicrobial strategy
The effects of new technology adoption on employee skills in the prosthetics profession
- …
