11,264 research outputs found

    A vapor barrier for cold testing printed circuit cards

    Get PDF
    Cold testing method prevents formation of frost on printed circuit boards and part holders during testing at sub-zero temperatures. Freon permits rapid attainment of the required testing temperature

    Domain Coarsening in Systems Far from Equilibrium

    Get PDF
    The growth of domains of stripes evolving from random initial conditions is studied in numerical simulations of models of systems far from equilibrium such as Rayleigh-Benard convection. The scaling of the size of the domains deduced from the inverse width of the Fourier spectrum is studied for both potential and nonpotential models. The morphology of the domains and the defect structures are however quite different in the two cases, and evidence is presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende

    The monoclinic phase in PZT: new light on morphotropic phase boundaries

    Get PDF
    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a result, an unexpected monoclinic phase has been found to exist in between the well-known tetragonal and rhombohedral PZT phases. A detailed structural analysis, together with the investigation of the field effect in this region of compositions, have led to an important advance in understanding the mechanisms responsible for the physical properties of PZT as well as other piezoelectric materials with similar morphotropic phase boundaries.Comment: 5 pages REVTeX file, 6 figures embedded. Presented at the Workshop on "Fundamental Physics of Ferroelectrics" held in Aspen, February 00. To appear in the proceeding

    Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    Get PDF
    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data

    Effect of phonon scattering by surface roughness on the universal thermal conductance

    Get PDF
    The effect of phonon scattering by surface roughness on the thermal conductance in mesoscopic systems at low temperatures is calculated using full elasticity theory. The low frequency behavior of the scattering shows novel power law dependences arising from the unusual properties of the elastic modes. This leads to new predictions for the low temperature depression of the thermal conductance below the ideal universal value. Comparison with the data of Schwab et al. [Nature 404, 974 (2000)] suggests that surface roughness on a scale of the width of the thermal pathway is important in the experiment.Comment: 6 pages, 3 figure

    The conceptual design of a 36 GHz RF undulator

    Get PDF
    The CompactLight project supported by European H₂020 is to design a hard X-ray FEL facility beyond today’s state of the art. The project integrates photo injector, X-band acceleration and innovative compact short-period undulators together to make the machine more compact. RF undulator has an extraordinary advantage of working at very short undulator period. A conceptual design for a RF undulator at 36 GHz using a corrugated cylindrical waveguide operating in the HE11 mode is presented in this paper. Based on beam dynamics simulation and photon beam radiation simulations, the possibility of RF undulator to be used in CompactLight project is evaluated

    Unsupervised machine learning of integrated health and social care data from the Macmillan Improving the Cancer Journey service in Glasgow

    Get PDF
    Background: Improving the Cancer Journey (ICJ) was launched in 2014 by Glasgow City Council and Macmillan Cancer Support. As part of routine service, data is collected on ICJ users including demographic and health information, results from holistic needs assessments and quality of life scores as measured by EQ-5D health status. There is also data on the number and type of referrals made and feedback from users on the overall service. By applying artificial intelligence and interactive visualization technologies to this data, we seek to improve service provision and optimize resource allocation.Method: An unsupervised machine-learning algorithm was deployed to cluster the data. The classical k-means algorithm was extended with the k-modes technique for categorical data, and the gap heuristic automatically identified the number of clusters. The resulting clusters are used to summarize complex data sets and produce three-dimensional visualizations of the data landscape. Furthermore, the traits of new ICJ clients are predicted by approximately matching their details to the nearest existing cluster center.Results: Cross-validation showed the model’s effectiveness over a wide range of traits. For example, the model can predict marital status, employment status and housing type with an accuracy between 2.4 to 4.8 times greater than random selection. One of the most interesting preliminary findings is that area deprivation (measured through Scottish Index of Multiple Deprivation-SIMD) is a better predictor of an ICJ client’s needs than primary diagnosis (cancer type).Conclusion: A key strength of this system is its ability to rapidly ingest new data on its own and derive new predictions from those data. This means the model can guide service provision by forecasting demand based on actual or hypothesized data. The aim is to provide intelligent person-centered recommendations. The machine-learning model described here is part of a prototype software tool currently under development for use by the cancer support community.Disclosure: Funded by Macmillan Cancer Support</p

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ−1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure
    • …
    corecore