38 research outputs found

    Creation of an Enhanced Recovery after Surgery (ERAS) Guideline for neonatal intestinal surgery patients: A knowledge synthesis and consensus generation approach and protocol study

    Get PDF
    Introduction: Enhanced Recovery After Surgery (ERAS) guidelines integrate evidence-based practices into multimodal care pathways designed to optimise patient recovery following surgery. The objective of this project is to create an ERAS protocol for neonatal abdominal surgery. The protocol will identify and attempt to bridge the gaps between current practices and best evidence. Our study is the first paediatric ERAS protocol endorsed by the International ERAS Society. Methods: A research team consisting of international clinical and family stakeholders as well as methodological experts have iteratively defined the scope of the protocol in addition to individual topic areas. A modified Delphi method was used to reach consensus. The second phase will include a series of knowledge syntheses involving a rapid review coupled with expert opinion. Potential protocol elements supported by synthesised evidence will be identified. The Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) system will be used to determine strength of recommendations and the quality of evidence. The third phase will involve creation of the protocol using a modified RAND/UCLA Appropriateness Method. Group consensus will be used to rate each element in relation to the quality of evidence supporting the recommendation and the appropriateness for guideline inclusion. This protocol will form the basis of a future implementation study. Ethics and dissemination: This study has been registered with the ERAS Society. Human ethics approval (REB 18-0579) is in place to engage patient families within protocol development. This research is to be published in peer-reviewed journals and will form the care standard for neonatal intestinal surgery

    Developing a core outcome set for future infertility research : An international consensus development study

    Get PDF
    STUDY QUESTION: Can a core outcome set to standardize outcome selection, collection and reporting across future infertility research be developed? SUMMARY ANSWER: A minimum data set, known as a core outcome set, has been developed for randomized controlled trials (RCTs) and systematic reviews evaluating potential treatments for infertility. WHAT IS KNOWN ALREADY: Complex issues, including a failure to consider the perspectives of people with fertility problems when selecting outcomes, variations in outcome definitions and the selective reporting of outcomes on the basis of statistical analysis, make the results of infertility research difficult to interpret. STUDY DESIGN, SIZE, DURATION: A three-round Delphi survey (372 participants from 41 countries) and consensus development workshop (30 participants from 27 countries). PARTICIPANTS/MATERIALS, SETTING, METHODS: Healthcare professionals, researchers and people with fertility problems were brought together in an open and transparent process using formal consensus science methods. MAIN RESULTS AND THE ROLE OF CHANCE: The core outcome set consists of: viable intrauterine pregnancy confirmed by ultrasound (accounting for singleton, twin and higher multiple pregnancy); pregnancy loss (accounting for ectopic pregnancy, miscarriage, stillbirth and termination of pregnancy); live birth; gestational age at delivery; birthweight; neonatal mortality; and major congenital anomaly. Time to pregnancy leading to live birth should be reported when applicable. LIMITATIONS, REASONS FOR CAUTION: We used consensus development methods which have inherent limitations, including the representativeness of the participant sample, Delphi survey attrition and an arbitrary consensus threshold. WIDER IMPLICATIONS OF THE FINDINGS: Embedding the core outcome set within RCTs and systematic reviews should ensure the comprehensive selection, collection and reporting of core outcomes. Research funding bodies, the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement, and over 80 specialty journals, including the Cochrane Gynaecology and Fertility Group, Fertility and Sterility and Human Reproduction, have committed to implementing this core outcome set. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Catalyst Fund, Royal Society of New Zealand, Auckland Medical Research Fund and Maurice and Phyllis Paykel Trust. The funder had no role in the design and conduct of the study, the collection, management, analysis or interpretation of data, or manuscript preparation. B.W.J.M. is supported by a National Health and Medical Research Council Practitioner Fellowship (GNT1082548). S.B. was supported by University of Auckland Foundation Seelye Travelling Fellowship. S.B. reports being the Editor-in-Chief of Human Reproduction Open and an editor of the Cochrane Gynaecology and Fertility group. J.L.H.E. reports being the Editor Emeritus of Human Reproduction. J.M.L.K. reports research sponsorship from Ferring and Theramex. R.S.L. reports consultancy fees from Abbvie, Bayer, Ferring, Fractyl, Insud Pharma and Kindex and research sponsorship from Guerbet and Hass Avocado Board. B.W.J.M. reports consultancy fees from Guerbet, iGenomix, Merck, Merck KGaA and ObsEva. C.N. reports being the Co Editor-in-Chief of Fertility and Sterility and Section Editor of the Journal of Urology, research sponsorship from Ferring, and retains a financial interest in NexHand. A.S. reports consultancy fees from Guerbet. E.H.Y.N. reports research sponsorship from Merck. N.L.V. reports consultancy and conference fees from Ferring, Merck and Merck Sharp and Dohme. The remaining authors declare no competing interests in relation to the work presented. All authors have completed the disclosure form

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    A school-based resilience intervention to decrease tobacco, alcohol and marijuana use in high school students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite schools theoretically being an ideal setting for accessing adolescents and preventing initiation of substance use, there is limited evidence of effective interventions in this setting. Resilience theory provides one approach to achieving such an outcome through improving adolescent mental well-being and resilience. A study was undertaken to examine the potential effectiveness of such an intervention approach in improving adolescent resilience and protective factor scores; and reducing the prevalence of adolescent tobacco, alcohol and marijuana use in three high schools.</p> <p>Methods</p> <p>A non-controlled before and after study was undertaken. Data regarding student resilience and protective factors, and measures of tobacco, alcohol and marijuana use were collected from grade 7 to 10 students at baseline (n = 1449) and one year following a three year intervention (n = 1205).</p> <p>Results</p> <p>Significantly higher resilience and protective factors scores, and significantly lower prevalence of substance use were evident at follow up.</p> <p>Conclusions</p> <p>The results suggest that the intervention has the potential to increase resilience and protective factors, and to decrease the use of tobacco, alcohol and marijuana by adolescents. Further more rigorous research is required to confirm this potential.</p

    Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks

    Get PDF
    Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the “Exome Array” to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1% and 2%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121∗], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

    Get PDF
    A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.D.S. is supported by grants from the National Institutes of Health, the Fogarty International, the Wellcome Trust, the British Heart Foundation, and Pfizer. P.N. is supported by the John S. LaDue Memorial Fellowship in Cardiology from Harvard Medical School. H.-H.W. is supported by a grant from the Samsung Medical Center, Korea (SMO116163). S.K. is supported by the Ofer and Shelly Nemirovsky MGH Research Scholar Award and by grants from the National Institutes of Health (R01HL107816), the Donovan Family Foundation, and Fondation Leducq. Exome sequencing was supported by a grant from the NHGRI (5U54HG003067-11) to S.G. and E.S.L. D.G.M. is supported by a grant from the National Institutes of Health (R01GM104371). J.D. holds a British Heart Foundation Chair, European Research Council Senior Investigator Award, and NIHR Senior Investigator Award. The Cardiovascular Epidemiology Unit at the University of Cambridge, which supported the field work and genotyping of PROMIS, is funded by the UK Medical Research Council, British Heart Foundation, and NIHR Cambridge Biomedical Research Centre ... Fieldwork in the PROMIS study has been supported through funds available to investigators at the Center for Non-Communicable Diseases, Pakistan and the University of Cambridge, UK

    Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease

    No full text
    Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme. © 2014 Kiedrowski et al.Funding Agencies|AI083211, NIH, National Institutes of Health; AI101391, NIH, National Institutes of Health</p
    corecore