117 research outputs found

    Equine West Nile encephalitis, United States.

    Get PDF
    After the 1999 outbreak of West Nile (WN) encephalitis in New York horses, a case definition was developed that specified the clinical signs, coupled with laboratory test results, required to classify cases of WN encephalitis in equines as either probable or confirmed. In 2000, 60 horses from seven states met the criteria for a confirmed case. The cumulative experience from clinical observations and diagnostic testing during the 1999 and 2000 outbreaks of WN encephalitis in horses will contribute to further refinement of diagnostic criteria

    Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction

    Get PDF
    26Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26Al(n,p)26Mg and 26 Al(n,α)23Na reactions. We report on a single and coincidence measurement of the 27Al(p,p')27Al(p)26Mg and 27Al(p,p')27Al(α)23Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26Al+n threshold

    Neutron-proton pairing in the N=Z radioactive fp-shell nuclei 56Ni and 52Fe probed by pair transfer

    Full text link
    The isovector and isoscalar components of neutron-proton pairing are investigated in the N=Z unstable nuclei of the \textit{fp}-shell through the two-nucleon transfer reaction (p,3^3He) in inverse kinematics. The combination of particle and gamma-ray detection with radioactive beams of 56^{56}Ni and 52^{52}Fe, produced by fragmentation at the GANIL/LISE facility, made it possible to carry out this study for the first time in a closed and an open-shell nucleus in the \textit{fp}-shell. The transfer cross-sections for ground-state to ground-state (J=0+^+,T=1) and to the first (J=1+^+,T=0) state were extracted for both cases together with the transfer cross-section ratios σ\sigma(0+^+,T=1) /σ\sigma(1+^+,T=0). They are compared with second-order distorted-wave born approximation (DWBA) calculations. The enhancement of the ground-state to ground-state pair transfer cross-section close to mid-shell, in 52^{52}Fe, points towards a superfluid phase in the isovector channel. For the "deuteron-like" transfer, very low cross-sections to the first (J=1+^+,T=0) state were observed both for \Ni\phe\, and \Fe\phe\, and are related to a strong hindrance of this channel due to spin-orbit effect. No evidence for an isoscalar deuteron-like condensate is observed.Comment: 7 pages, 4 figure

    Forestry for a low carbon future. Integrating forests and wood products in climate change strategies

    Get PDF
    Following the introduction, Chapter 2 provides an overview of mitigation in the forest sector, addressing the handling of forests under UNFCCC. Chapters 3 to 5 focus on forest-based mitigation options – afforestation, reforestation, REDD+ and forest management – and Chapters 6 and 7 focus on wood-product based options – wood energy and green building and furnishing. The publication describes these activities in the context of UNFCCC rules, assessing their mitigation potential and economic attrac tiveness as well as opportunities and challenges for implementation. Chapter 8 discusses the different considerations involved in choosing the right mix of options as well as some of the instruments and means for implementation. Chapter 8 also highlights the co-benefits generated by forest-based mitigation and emphasizes that economic assessment of mitigation options needs to take these benefits into account. The concluding chapter assesses national commitments under UNFCCC involving forest miti gation and summarizes the challenges and opportunities

    Systematic Planning of Genome-Scale Experiments in Poorly Studied Species

    Get PDF
    Genome-scale datasets have been used extensively in model organisms to screen for specific candidates or to predict functions for uncharacterized genes. However, despite the availability of extensive knowledge in model organisms, the planning of genome-scale experiments in poorly studied species is still based on the intuition of experts or heuristic trials. We propose that computational and systematic approaches can be applied to drive the experiment planning process in poorly studied species based on available data and knowledge in closely related model organisms. In this paper, we suggest a computational strategy for recommending genome-scale experiments based on their capability to interrogate diverse biological processes to enable protein function assignment. To this end, we use the data-rich functional genomics compendium of the model organism to quantify the accuracy of each dataset in predicting each specific biological process and the overlap in such coverage between different datasets. Our approach uses an optimized combination of these quantifications to recommend an ordered list of experiments for accurately annotating most proteins in the poorly studied related organisms to most biological processes, as well as a set of experiments that target each specific biological process. The effectiveness of this experiment- planning system is demonstrated for two related yeast species: the model organism Saccharomyces cerevisiae and the comparatively poorly studied Saccharomyces bayanus. Our system recommended a set of S. bayanus experiments based on an S. cerevisiae microarray data compendium. In silico evaluations estimate that less than 10% of the experiments could achieve similar functional coverage to the whole microarray compendium. This estimation was confirmed by performing the recommended experiments in S. bayanus, therefore significantly reducing the labor devoted to characterize the poorly studied genome. This experiment-planning framework could readily be adapted to the design of other types of large-scale experiments as well as other groups of organisms

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Cross-shell states in 15^{15}C: a test for p-sd interactions

    Full text link
    The low-lying structure of 15^{15}C has been investigated via the neutron-removal 16^{16}C(d,t)(d,t) reaction. Along with bound neutron sd-shell hole states, unbound p-shell hole states have been firmly confirmed. The excitation energies and the deduced spectroscopic factors of the cross-shell states are an important measure of the [(p)−1(sd)2][(p)^{-1}(sd)^{2}] neutron configurations in 15^{15}C. Our results show a very good agreement with shell-model calculations using the SFO-tls interaction for 15^{15}C. However, a modification of the pp-sdsd and sdsd-sdsd monopole terms was applied in order to reproduce the N=9N=9 isotone 17^{17}O. In addition, the excitation energies and spectroscopic factors have been compared to the first calculations of 15^{15}C with the ab initioab~ initio self-consistent Green's function method employing the NNLOsat_{sat} interaction. The results show the sensitivity to the size of the N=8N=8 shell gap and highlight the need of going beyond the current truncation scheme in the theory
    • 

    corecore