42 research outputs found

    Influence of the synthetic method on the properties of two-photon-sensitive mesoporous organosilica nanoparticles

    No full text
    International audienceHerein we report the modulation of the properties of mesoporous silica nanoparticles (NPs) via various synthetic approaches. Three types of elaborations were compared, one in aqueous media at 25 °C, and the other two at 80 °C in water or in a water–ethanol mixture. For all these methods, an alkoxysilylated two-photon photosensitizer (2PS) was co-condensed with tetraethylorthosilicate (TEOS) in the presence of cetyltrimethylammonium bromide (CTAB), leading to five two-photon-sensitive mesoporous silica (M2PS) NPs. The M2PS NP porous structure could be tuned from radial to worm-like and MCM-41 types of organization. Besides, the 2PS precursor spatial dispersion was found to be highly dependent on both the 2PS initial concentration and the elaboration process. As a result, two-photon properties were modulated by the choice of the synthesis, the best results being found in aqueous media at 25 or 80 °C. Finally, the M2PS NPs were used for in vitro two-photon imaging of cancer cells

    TWO-PHOTON-ACTUATED THERANOSTIC NANOMEDICINE FOR CANCER TREATMENT

    No full text
    La nanomĂ©decine activĂ©e Ă  deux-photon est devenue l'un des principaux candidats Ă  l'accomplissement de la sĂ©lectivitĂ© spatiotemporelle nĂ©cessaire pour la nanomĂ©decine. En effet, la raison d'ĂȘtre de l'application mĂ©dicale de nanotechnologie dans le domaine du traitement du cancer est de diminuer et supprimer les effets secondaires causĂ©s par les techniques actuelles telles que la chimiothĂ©rapie et la radiothĂ©rapie, Ă  cause de leur manque de sĂ©lectivitĂ©. Parmi diverses nanoparticules (NPs), les nanoparticules de silice mĂ©soporeuse (MSN) ont attirĂ© une attention croissante dans la derniĂšre dĂ©cennie pour leur faible cytotoxicitĂ©, leur internalisation cellulaire et excrĂ©tion, et leur capacitĂ© de combiner de nombreuses fonctions Ă  la fois pour le diagnostique et la thĂ©rapie de cancers via un seul nanovĂ©hicule : l'ainsi appelĂ©e nanomĂ©decine thĂ©ranostique.Dans cette thĂšse, des MSN pour l'activation Ă  un et deux-photon d'imagerie par fluorescence, de dĂ©livrance de principe actifs et d'acides nuclĂ©iques, et de photothĂ©rapie dynamique (PTD), seront prĂ©sentĂ©es. PremiĂšrement, le relargage contrĂŽlĂ© de molĂ©cules encapsulĂ©es dans des MSN fonctionnalisĂ©es avec des nanovalves est considĂ©rĂ© par effet plasmonique. La photodĂ©gradation contrĂŽlĂ©e de la silice soumise Ă  l'effet photothermique de NPs d'or est ensuite Ă©tudiĂ©e. DeuxiĂšmement, l'activation biphotonique est considĂ©rĂ©e pour la dĂ©livrance contrĂŽlĂ©e de molĂ©cules anticancĂ©reuses in-vitro par avec des nano-rotor et des nano-valves, ainsi que la fonctionnalisation de surface des NPs par des dĂ©rivĂ©s d'ammonium- azobenzene pour la dĂ©livrance d'acides nuclĂ©iques. TroisiĂšmement, des MSN multifonctionnelles incorporant des photosensibilisateurs Ă  deux-photon sont systĂ©matiquement Ă©tudiĂ©es en termes de leurs propriĂ©tĂ©s optiques et photophysiques; la sĂ©lection du meilleur matĂ©riau est suivie d'applications biomĂ©dicales in-vitro.De plus, deux types de nanomatĂ©riaux Ă©mergeant sont Ă©galement Ă©laborĂ©s pour la nanomĂ©decine activĂ©e Ă  deux-photon, des NPs de polysilsesquioxane pontĂ©s (BS) et d'organosilice mĂ©soporeuse pĂ©riodiques (PMO). Ces matĂ©riaux furent Ă©laborĂ©s sans prĂ©curseur de silice (tĂ©traĂ©thoxysilane par exemple), et seulement Ă  partir de bis- ou multi-organoalkoxysilane, afin d'obtenir le plus haut pourcentage de matiĂšre organique pour l'application ciblĂ©e. En consĂ©quence, des NPs de BS et de PMO hybrides Ă  base de disulfures se rĂ©vĂ©lĂšrent ĂȘtre des outils biodĂ©gradables, et les NPs Ă  base de photosensibilisateurs furent appliquĂ©es pour la PTD Ă  deux-photon. Des NPs de BS et de cƓur-coquille d'or-BS sont synthĂ©tisĂ©es pour d'efficaces imagerie et PTD Ă  deux-photon, tandis que des NPs de PMO servirent de nano-plateformes thĂ©ranostiques. En outre, diverse NPs de PMO multipodes Ă  surface spĂ©cifique trĂšs Ă©levĂ©es sont prĂ©sentĂ©es pour la construction de structuration complexe Ă  l'Ă©chelle nanomĂ©trique.Enfin, des nano-conteneurs d'MSN composĂ©es de cƓur d'oxyde de fer (Fe3O4@MSN) sont dĂ©crites pour de multiples applications. D'une part, l'Ă©laboration de NPs MSN (et PMO) magnĂ©tiques sensibles Ă  deux-photon est Ă©tudiĂ©e en tant que perspective pour la dĂ©livrance de gĂšne combinant l'imagerie par rĂ©sonance magnĂ©tique. D'autre part, les conteneurs de Fe3O4@MSN sont misent en Ɠuvre et appliquĂ©s pour la dĂ©pollution de mĂ©taux lourds via la fonctionnalisation d'un ligand de type acide diĂ©thylĂšne triamine penta acĂ©tique. L'augmentation de l'efficacitĂ© de la dĂ©pollution est Ă©tudiĂ©e par la fonctionnalisation de la surface extĂ©rieure et/ou des pores des [email protected] actuated nanomedicine has become one of the main proponents for the achievement of the spatiotemporal selectivity needed for nanomedicine. Indeed, the raison d'ĂȘtre of the medical application of nanotechnology in the field of cancer treatment is to lower and suppress the side effects caused by current techniques such as chemotherapy and radiotherapy, due to their lack of selectivity. Among various nanoparticles (NPs), mesoporous silica nanoparticles (MSN) have attracted increasing attention over the past decade for their low cytotoxicity, cellular internalization and excretion, and the ability to carry multiple features for both the diagnosis and therapy of cancers in a single nanovehicle: the so-called theranostic nanomedicine.In this dissertation, I will describe MSN for one and/or two-photon-actuated fluorescence imaging, drug-delivery, gene delivery and photodynamic therapy (PDT). First, plasmonically-triggered cargo delivery via MSN nanovalves and designed mesoporous silica photodegradation is presented. Then, in-vitro two-photon-triggered drug delivery with azobenzene-functionalized MSN such as nanoimpellers and fluorescent nanovalves, along with preliminary studies of gene delivery via ammonium-functionalized nanoimpellers are discussed. Multifunctional MSN incorporating a two-photon photosensitizer are systematically studied in terms of the resulting optical and photophysical properties of the NPs, and then used for in-vitro biomedical applications.Furthermore, two kinds of emerging nanomaterials are also designed for two-photon actuated nanomedicine, bridged silsesquioxane (BS) and periodic mesoporous organosilica (PMO) NPs. These nanomaterials are elaborated without silica precursor (e.g. tetraethoxysilane) and solely with bis- or tetra-organoalkoxysilanes, thus providing materials with the highest organic content for the targeted applications. Consequently, disulfide-based hybrid BS and PMO NPs were elaborated as biodegradable nanomedical tools, and photosensitizer-based BS and PMO NPs were used for efficient in-vitro PDT. BS and gold-BS core-shells NPs are constructed for ultrabright two-photon imaging and efficient PDT, while two-photon functionalized PMO NPs serve as theranostic nanocarriers. Besides, versatile multipodal ethylene-benzene PMO NPs with very high surface areas are presented as a promising strategy for the design of structural complexities at the nanoscale.Finally, iron oxide core MSN shell (Fe3O4@MSN) nanocontainers are described for versatile applications. The design of two-photon-sensitive magnetic MSN and PMO core-shell nanovehicles is presented as a perspective for gene delivery and magnetic resonance imaging. Furthermore, Fe3O4@MSN containers are constructed for heavy metal removal of twelve of the most toxic metal ions through the diethylene triamine pentaacetic acid (DTPA) ligand. The enhancement of the pollutant removal efficiency is studied by selective surface and/or porous DTPA functionalizations

    Nanovalve-controlled cargo release activated by plasmonic heating

    No full text
    International audienc

    Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating

    No full text
    The synthesis and operation of a light-operated nanovalve that controls the pore openings of mesoporous silica nanoparticles containing gold nanoparticle cores is described. The nanoparticles, consisting of 20 nm gold cores inside ∌150 nm mesoporous silica spheres, were synthesized using a unique one-pot method. The nanovalves consist of cucurbit[6]­uril rings encircling stalks that are attached to the ∌2 nm pore openings. Plasmonic heating of the gold core raises the local temperature and decreases the ring–stalk binding constant, thereby unblocking the pore and releasing the cargo molecules that were preloaded inside. Bulk heating of the suspended particles to 60 °C is required to release the cargo, but no bulk temperature change was observed in the plasmonic heating release experiment. High-intensity irradiation caused thermal damage to the silica particles, but low-intensity illumination caused a local temperature increase sufficient to operate the valves without damaging the nanoparticle containers. These light-stimulated, thermally activated, mechanized nanoparticles represent a new system with potential utility for on-command drug release

    Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment

    No full text
    International audienceCoherent two‐photon‐excited (TPE) therapy in the near‐infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 ”m3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE‐NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well‐established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side‐effect therapies via TPE‐NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two‐photon absorbers for drug delivery and diagnosis. Currently, most light‐actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two‐photon‐sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE‐NIR ultrasensitive diagnosis and therapy
    corecore