771 research outputs found
A statistical mechanics description of environmental variability in metabolic networks
Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system
A systematic review of current knowledge of HIV epidemiology and of sexual behaviour in Nepal
OBJECTIVE: To systematically review information on HIV epidemiology and on sexual behaviour in Nepal with a view to identifying gaps in current knowledge.
METHODS: Systematic review covering electronic databases, web-based information, personal contact with experts and hand searching of key journals.
RESULTS: HIV-1 seroprevalence has been rising rapidly in association with high-risk behaviours, with current levels of 40% amongst the nation's injecting drug users and approaching 20% amongst Kathmandu's female commercial sex workers (FCSWs). HIV seroprevalence remains low in the general population (0.29% of 15–49 year olds). There are significant methodological limitations in many of the seroprevalence studies identified, and these estimates need to be treated with caution. There are extensive migration patterns both within the country and internationally which provide the potential for considerable sexual networking. However, studies of sexual behaviour have focused on FCSWs and the extent of sexual networks within the general population is largely unknown.
CONCLUSIONS: Whilst some of the ingredients are present for an explosive HIV epidemic in Nepal, crucial knowledge on sexual behaviour in the general population is missing. Research on sexual networking is urgently required to guide HIV control in Nepal. There is also a need for further good-quality epidemiological studies of HIV seroprevalence
In Situ Kinetics of Cytochromes
ABSTRACT: In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c 1 and c 2 have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc 1 complex in purple bacteria usually report only the sum cyt c 1 + cyt c 2 kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c 1 and c 2 in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c 1 and c 2 are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c 1 oxidation measured with the DW method which were faster than those determined by the LS method (half-time of ∼120 µs vs half-time of ∼235 µs, in the presence of antimycin). In addition, the LS approach revealed a delay of ∼50 µs in the kinetics of cyt c 1 oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c 1 after light activation of the photosynthetic reaction center, especially the dissociation of cyt c 2 from the reaction center. We also found that kinetics of both cyt c 1 and c 2 measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c 1 and c 2 , and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc 1 turnover in situ
Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience
Hierarchical organisation is a common feature of many directed networks arising in nature and technology. For example, a well-defined message-passing framework based on managerial status typically exists in a business organisation. However, in many real-world networks such patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which empirical data is collated the nodes will often be ordered so as to obscure any underlying structure. In addition, the possibility of even a small number of links violating any overall “chain of command” makes the determination of such structures extremely challenging. Here we address the issue of how to reorder a directed network in order to reveal this type of hierarchy. In doing so we also look at the task of quantifying the level of hierarchy, given a particular node ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature, we show that a relevant discrete optimization problem leads to a natural hierarchical node ranking. We also show that this ranking arises via a maximum likelihood problem associated with a new range-dependent hierarchical random graph model. This random graph insight allows us to compute a likelihood ratio that quantifies the overall tendency for a given network to be hierarchical. We also develop a generalization of this node ordering algorithm based on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data, and on a real-world network from neuroscience where results may be validated biologically
Photosynthetic growth despite a broken Q-cycle
Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis
Enzymatic Activities of Isolated Cytochrome bc1-like Complexes Containing Fused Cytochrome b Subunits with Asymmetrically Inactivated Segments of Electron Transfer Chains
Homodimeric structure of cytochrome bc_1, a common component of biological energy conversion systems, builds in four catalytic quinone oxidation/reduction sites and four chains of cofactors (branches) that, connected by a centrally located bridge, form a symmetric H-shaped electron transfer system. The mechanism of operation of this complex system is under constant debate. Here, we report on isolation and enzymatic examination of cytochrome bc1-like complexes containing fused cytochrome b subunits in which asymmetrically introduced mutations inactivated individual branches in various combinations. The structural asymmetry of those forms was confirmed spectroscopically. All the asymmetric forms corresponding to cytochrome bc_1 with partial or full inactivation of one monomer retain high enzymatic activity but at the same time show a decrease in the maximum turnover rate by a factor close to 2. This strongly supports the model assuming independent operation of monomers. The cross-inactivated form corresponding to cytochrome bc_1 with disabled complementary parts of each monomer retains the enzymatic activity at the level that, for the first time on isolated from membranes and purified to homogeneity preparations, demonstrates that intermonomer electron transfer through the bridge effectively sustains the enzymatic turnover. The results fully support the concept that electrons freely distribute between the four catalytic sites of a dimer and that any path connecting the catalytic sites on the opposite sides of the membrane is enzymatically competent. The possibility to examine enzymatic properties of isolated forms of asymmetric complexes constructed using the cytochrome b fusion system extends the array of tools available for investigating the engineering of dimeric cytochrome bc1 from the mechanistic and physiological perspectives
A blind detection of a large, complex, Sunyaev--Zel'dovich structure
We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of
the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have
been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up
deep pointed observations the SZ effect is detected with a maximum peak
decrement greater than 8 \times the thermal noise. No corresponding emission is
visible in the ROSAT all-sky X-ray survey and no cluster is evident in the
Palomar all-sky optical survey. Compared with existing SZ images of distant
clusters, the extent is large (\approx 10') and complex; our analysis favours a
model containing two clusters rather than a single cluster. Our Bayesian
analysis is currently limited to modelling each cluster with an ellipsoidal or
spherical beta-model, which do not do justice to this decrement. Fitting an
ellipsoid to the deeper candidate we find the following. (a) Assuming that the
Evrard et al. (2002) approximation to Press & Schechter (1974) correctly gives
the number density of clusters as a function of mass and redshift, then, in the
search area, the formal Bayesian probability ratio of the AMI detection of this
cluster is 7.9 \times 10^4:1; alternatively assuming Jenkins et al. (2001) as
the true prior, the formal Bayesian probability ratio of detection is 2.1
\times 10^5:1. (b) The cluster mass is MT,200 = 5.5+1.2\times 10^14h-1M\odot.
(c) Abandoning a physical model with num- -1.3 70 ber density prior and instead
simply modelling the SZ decrement using a phenomenological {\beta}-model of
temperature decrement as a function of angular distance, we find a central SZ
temperature decrement of -295+36 {\mu}K - this allows for CMB primary
anisotropies, receiver -15 noise and radio sources. We are unsure if the
cluster system we observe is a merging system or two separate clusters.Comment: accepted MNRAS. 12 pages, 9 figure
"Author! Author!" : Shakespeare and biography
Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe
- …