442 research outputs found

    What Lies Beneath: Treatment of Canvas-backed Pennsylvania Coal Mining Maps for Digitization

    Get PDF
    An ongoing program to preserve approximately seven hundred oversized, canvas-backed, coal mining maps from the CONSOL Energy Mining Map Collection was initiated by the University of Pittsburgh (Pitt) in 2007, supported by funding from the United States Department of the Interior Office of Surface Mining and Reclamation (OSM) and the Pennsylvania Department of Environmental Protection (PA-DEP). The main goal of this project is to stabilize and clean the mining maps for digitization at the OSM National Mine Map Repository (NMMR) located in Pittsburgh, Pennsylvania. The digitized data of the underground mines will be incorporated into Geographical Information Systems relative to mine safety, land reclamation, current mining operations, and new development

    Seerratus Anterior Plane Block (SAPB) Improves Paine Control in Rib Fractures

    Get PDF
    Background: •Trauma is a major cause of morbidity and mortality worldwide. Rib fractures are identified in at least 10% of all injured patients. •Rib fractures can lead to significant respiratory complications, with pneumonia and respiratory failure occurring in up to 31% of patients with rib fractures. Early initiation of aggressive pain control and pulmonary hygiene with incentive spirometry are standard of care to prevent complications from developing. •In the Emergency Department, patients with rib fractures typically receive systemic analgesia that is largely narcotic-based. This pain control strategy puts patients at risk for the side effects of narcotics such as constipation, delirium, and opioid addiction. •Regional ultrasound-guided anesthesia is well within the purview of emergency physicians and offers a safe and effective alternative to systemic pain medications. A regional block known as the Serratus Anterior Plane Block (SAPB) was described in the anesthesia literature in 2013 as a strategy for improving pain related to rib fractures. •The literature evaluating the effectiveness of the SAPB is limited to case reports with a small number of patients (n = 1-6). No published studies have assessed incentive spirometry performance in patients who have received the SAPB, described the systemic analgesia required by patients who have received the SAPB, or formally evaluated the safety of the SAPB

    The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries

    Full text link
    Supermassive black hole binaries (SMBHBs) in the 10 million to 10 billion M⊙M_\odot range form in galaxy mergers, and live in galactic nuclei with large and poorly constrained concentrations of gas and stars. There are currently no observations of merging SMBHBs--- it is in fact possible that they stall at their final parsec of separation and never merge. While LIGO has detected high frequency GWs, SMBHBs emit GWs in the nanohertz to millihertz band. This is inaccessible to ground-based interferometers, but possible with Pulsar Timing Arrays (PTAs). Using data from local galaxies in the 2 Micron All-Sky Survey, together with galaxy merger rates from Illustris, we find that there are on average 91±791\pm7 sources emitting GWs in the PTA band, and 7±27\pm2 binaries which will never merge. Local unresolved SMBHBs can contribute to GW background anisotropy at a level of ∼20%\sim20\%, and if the GW background can be successfully isolated, GWs from at least one local SMBHB can be detected in 10 years.Comment: submitted to Nature Astronomy (reformatted for arXiv

    Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages.

    Get PDF
    Objectives: We examined the in vitro pharmacodynamics and cellular accumulation of the standard anti-leishmanial drugs amphotericin B and miltefosine in intracellular Leishmania donovani amastigote-macrophage drug assays. Methods: Primary mouse macrophages were infected with L. donovani amastigotes. In time-kill assays infected macrophages were exposed to at least six different concentrations of serially diluted drugs and the percentage of infected macrophages was determined after 6, 12, 24, 48, 72 and 120 h of exposure. Cellular drug accumulation was measured following exposure to highly effective drug concentrations for 1, 6, 24, 48 and 72 h. Data were analysed through a mathematical model, relating drug concentration to the percentage of infected cells over time. Host cell membrane damage was evaluated through measurement of lactate dehydrogenase release. The effect of varying the serum and albumin concentrations in medium on the cellular accumulation levels of miltefosine was measured. Results: Amphotericin B was more potent than miltefosine (EC50 values of 0.65 and 1.26 μM, respectively) and displayed a wider therapeutic window in vitro. The kinetics of the cellular accumulation of amphotericin B was concentration- and formulation-dependent. At an extracellular concentration of 10 μM miltefosine maximum cellular drug levels preceded maximum anti-leishmanial kill. Miltefosine induced membrane damage in a concentration-, time- and serum-dependent manner. Its cellular accumulation levels increased with decreasing amounts of protein in assay medium. Conclusions: We have developed a novel approach to investigate the cellular pharmacology of anti-leishmanial drugs that serves as a model for the characterization of new drug candidates

    Observation of Changes in the Atomic and Electronic Structure of Single-Crystal YBa₂Cu₃O₆.₆ Accompanying Bromination

    Get PDF
    To ascertain the role of bromination in the recovery of superconductivity in underdoped YBa2Cu3O6+y (YBCO), we have performed polarized multiple-edge x-ray-absorption fine structure (XAFS) measurements on normal (y~0.6) and brominated (Br/Cu~1/30, y~0.6) single crystals with superconducting transitions at 63 and 89 K, respectively. The brominated sample becomes strongly heterogeneous on an atomic length scale. Approximately one-third of YBCO is locally decomposed yet incorporated as a well-ordered host lattice as nanoscale regions. The decomposed phase consists of heavily distorted domains with an order not following that of the host lattice. Structurally, these domains are fragments of the YBCO lattice that are discontinued along the Cu(1)-O(1) containing planes. The local structure is consistent with the cluster expansions: Y-O(2,3)8-Cu(2)8-..., Ba-O8-Cu(2)4Cu(1)2-..., and Cu-O4... about the Y, Ba, and Cu sites. Interatomic distances and Debye-Waller factors for the expansions were determined from fits to Y K-, Ba L3-, and Cu K-edge XAFS data at room temperature. Br K-edge data reveal that Br does not enter substitutionally or interstitially into the perfect YBCO lattice. However, Br does occupy the Cu(1) sites in a nanofragment of the YBCO lattice, forming Br-O(4)-Ba-Cu2(1)Cu(2)-... nanoclusters. From polarized measurements these nanoclusters were found to be almost randomly oriented with respect to the host crystal, and probably are the nucleus of the decomposed phase. This heterogeneity brings about the unusual structural and electronic properties of the normal state previously reported in the literature. Implications on for diffraction, transport, and magnetization measurements are discussed

    Isocurvature Fluctuations Induce Early Star Formation

    Get PDF
    The early reionisation of the Universe inferred from the WMAP polarisation results, if confirmed, poses a problem for the hypothesis that scale-invariant adiabatic density fluctuations account for large-scale structure and galaxy formation. One can only generate the required amount of early star formation if extreme assumptions are made about the efficiency and nature of early reionisation. We develop an alternative hypothesis that invokes an additional component of a non-scale-free isocurvature power spectrum together with the scale-free adiabatic power spectrum for inflation-motivated primordial density fluctuations. Such a component is constrained by the Lyman alpha forest observations, can account for the small-scale power required by spectroscopic gravitational lensing, and yields a source of early star formation that can reionise the universe at z~20 yet becomes an inefficient source of ionizing photons by z~10, thereby allowing the conventional adiabatic fluctuation component to reproduce the late thermal history of the intergalactic medium.Comment: 6 pages, 5 figures, submitted to MNRA

    Nestor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation

    Get PDF
    Background - Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. Results - Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. Conclusions - Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease
    • …
    corecore