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Abstract

Laser optical trapping is a developing technology. Optical traps have 

become valuable tools in a number of research fields including physics, 

optics, fluid mechanics and most significantly - biology. The ability to 

accurately manipulate micro and nano scale objects, measure forces to 

piconewton accuracy and integrate alongside other technologies have made 

optical traps unique devices.

In the research presented in this thesis a complex and versatile optical 

trapping system is designed, built and developed for investigation of new 

and innovative engineering based applications for the optical trap. The 

practical problems associated with optical trapping were assessed and, 

where possible, solutions are offered.

Various potential engineering applications for optical traps were first 

identified and then investigated to determine new uses and capabilities for 

optical traps.

A number of exciting outcomes of the work are presented. These include:

• Accurate placement of silica microspheres into a thermosetting 

resin, which has potential micro processing applications.

• The manipulation of metallic particles through unconventional 

trapping techniques.

• Micro scale ablation of glass cover slips with copper particles on 

the glass surface to assist in the coupling of energy into the glass 

substrate.
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Chapter 1

Introduction
1.1 Background

It is now over forty years since Ashkin’s seminal work (1) began the 

technology of optical traps and over twenty years since he first achieved a 

genuine single beam optical trap in three dimensions. Since then, the 

technology has flourished in many research areas including physics, fluid 

mechanics and of course, biology. In spite of this swift development, there 

are still many unexplored avenues of interest. In recent times, the optical 

trap has become a commercially available tool and is fast becoming a 

standard lab analytical tool to compare with the atomic force microscope 

(ARM) or the scanning electron microscope (SEM).

The optical trap’s natural capabilities lend themselves exceptionally well to 

biological research offering capabilities not available with any other kind 

of machine. Thus, biological research has been the main focus of much of 

the research date. Consequently, it may be timely for other sciences to 

catch up and for the capabilities of this extremely versatile technology to 

be realised across a wide range of scientific fields.

1
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1.2 Thesis Aim and Objectives

This work in this thesis aimed to harness an already existing technology, 

optical trapping, and investigate its potential applications for purely 

engineering purposes. A significant section of the project involved the 

building of a new versatile optical trapping system with a variety of 

functionalities designed specifically for engineering applications. Next, the 

objective was to find and explore new potential engineering applications 

for the optical trap. The nature of optical traps meant that the engineering 

applications being referred to would be of micro or nano scale. Once new 

applications had been identified, investigations would be undertaken to 

establish the viability of such a method. Throughout the project the optical 

trapping system was further developed and configured to meet the needs of 

these potential applications. This engineering based approach allowed for 

practical aspects of the optical trap to be investigated in ways not 

previously seen. As such, this thesis represents a significant increase in the 

knowledge and understanding of the optical trap an engineering tool.

This work in this thesis uses a practical engineering approach to problems, 

alongside an understanding of the fundamental physics behind optical 

trapping. As this work aims to offer an alternative approach to the 

biosciences work undertaken with optical traps, the biological applications 

are presented as part of the literature review in terms of how developments 

in optical trapping technology have enabled new biosciences research.

2
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1.3 Thesis Structure

This thesis is separated into seven chapters which aim to first present the 

process of developing an optical trapping system and then a series of 

experiments using of the optical trap as an engineering tool or device are 

undertaken and the results and outcomes discussed.

It begins with this introductory chapter to outline the background to the 

topic, the objectives of the research undertaken and the structure of the 

thesis.

Chapter 2 begins with a brief introduction to the history of the laser and 

optical traps. It then sets out the current state of the ait of the optical 

trapping field, with particular attention paid to work which has used the 

optical trap as an engineering tool or device.

Chapter 3 sets out how the system was designed and built. It details why 

such design decisions were taken, the novel aspects of this particular 

system, such as the two lasers focussed to the same position, quadrant 

detector and spatial light modulator, and what added functions these allow, 

the capabilities and limitations of the system and finally some of the 

common problems associated with optical haps and the methods used to 

resolve them.

Chapter 4 details the optical trap as a force measurement tool. It outlines 

the different methods of calibrating the device and the different methods of 

obtaining force measurements from the literature. The chapter sets out the 

various procedures used and corresponding results for hap stiffness, 

achieved on the system described in Chapter 3, while varying a variety of 

parameters, such as laser power and microsphere diameter.

3
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Chapter 5 describes a series of new experiments which use the optical trap 

as a device for placing (and fixing) microspheres in a desired location and 

formation. It sets out the procedure used and the results obtained, including 

the newly established capability of placing individual microspheres. The 

chapter concludes with a discussion of this novel application with thoughts 

expressed on the capabilities and limitations of such a technique.

Chapter 6 compiles a series of other experiments undertaken each with the 

purpose of finding new and novel engineering applications for the optical 

trap. These include:

• Experiment to investigate how the colour of a microspheres effects 

the optical trapping process.

• Manipulating metallic particles using annular shaped beams formed 

using a spatial light modulator (SLM)

• An experiment which attempts to fuse of initially silica 

microspheres and then metallics microscale particles.

Chapter 7 discusses and summarises this body of work as a whole, 

bringing together the various results and outcomes. It includes 

recommendations of possible further studies.

4
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Chapter 2

Literature Review and State of the Art

2.1 Optical Trapping

2.1.1 Before Optical Trapping

It is now just over forty years since Arthur Ashkin’s initial calculations 

suggested that a sufficient radiation pressure force could be achieved with 

a laser in order to cause a microscopic object to move (1). However long 

before Ashkin, physicists had suggested that photons would ‘carry’ 

momentum and thus exert a force, starting with early astronomers (such as 

Kepler) right through to Maxwell’s theory of electromagnetism, which 

suggested that light may be able to exert force (2).

This early work led two separate groups to attempt to prove the existence 

of, and quantify, light pressure. Without coherent light sources the 

radiation pressures were immensely small but both studies nevertheless 

managed to prove qualitatively the existence of such radiation pressure (3),

5
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(4). One of these groups, Nichols and Hull at Dartmouth University, 

subsequently went on to quantify their results in 1903 (5,6). The radiation 

pressures observed were significantly smaller than available today. They 

measured an average radiation pressure of 1.05x1 O'4 dyne produced by an 

A.T. Thompson arc lamp, which was neither coherent nor focussed.

2.1.2 How Optical Trapping Began

Optical trapping as we know it began with Ashkin at Bell Telephone 

Laboratories in 1969. With coherent and highly focusable sources of light 

then becoming available, Ashkin realised that much greater radiation 

pressures could be achieved than had been realised by Nichols and Hull. In 

his seminal paper (1) Ashkin had hoped to quantify the radiation pressure 

but came across something of possibly greater interest, the gradient force. 

He demonstrated that the intensity gradient, due to the Gaussian nature of 

the beam, led objects of high refractive index (relative to that of the 

surrounding medium) to be drawn towards the axis of the beam. Despite 

the use of highly transmissive spheres (0.59, 1.31, 2.68|im latex spheres) 

there was still some reflections which led to a pushing force, down the axis 

of the laser (a CW argon laser, with wavelength, X = 514.5nm). This led 

Ashkin to his next work: single beam trapping. He achieved trapping using 

a single beam simply by directing the laser upwards and ensuring the 

radiation pressure, caused by reflections on the beam’s front surface, 

balanced with the gravitational force on the object (7).

Over the following twenty years Ashkin and his team continued to develop 

the technology with the first stable optical levitation based trap (8), optical 

levitation of droplets (9) and finally through to optical tweezers, a single 

beam gradient force trap achieved through the use of a high numerical

6
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aperture microscope objective in 1986 (10). This was the first system able 

to trap objects in 3 dimensions without needing to use gravity to counter 

the pushing force produced by photon reflections.

Since Ashkin’s 1986 paper the field has expanded swiftly with many 

researchers seeing the potential of optical tweezers for all manner of 

research areas. There have been two excellent extensive reviews of the vast 

array of research being undertaken with the use of optical tweezers. Moffitt 

et al focusses on the biochemical and biophysical process, including the 

mechanical properties of biological polymers and molecular machines 

which drive the internal dynamics of a cell(ll). Neuman et al focussing on 

the different optical trapping apparatus employed, such as Spatial Light 

Modulators(SLMs), Acoustic Optic Deflectors(AODs), piezoelectric 

stages, calibration methods, and the advances that have been made 

particularly in biological fields as a result of the technology of optical 

trapping(12).

As trapping works easiest in water based solutions and with objects in the 

micron range (of the same order of magnitude as cells) it was only natural 

that optical tweezers would become a significant tool in the biological field 

(13). Equally, as it became clear that the forces exerted could be both 

measured and calibrated such systems appealed to physicists (14,15). 

However, perhaps surprisingly, there has been much less work in the 

engineering field. Therefore, the research described in this thesis looks to 

investigate possible engineering applications for optical traps.

7
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2.1.3 How Optical Traps work

Optical trapping is the term used for the trapping and manipulation of 

small objects (usually of the micron order of magnitude) through the use of 

laser light. In reality, there are two distinctly different regimes of optical 

trapping. Although the phenomenon of optical trapping occurs for both 

regimes, each results from quite different scientific principles.

The first regime is when the trapped objects are much larger than the 

wavelength of the trapping laser beam. The second regime is when the 

trapped objects are much smaller than the wavelength of the light.

The first regime is dependent upon the conservation of momentum of the 

laser light. This regime can be thought of as a ray optics problem and is 

thus commonly called the ray optics regime(l6). In, the second regime, for 

much smaller objects relative to the laser wavelength, the trapped objects 

can be thought of as electric dipoles in the electric field of the laser. This 

regime is commonly referred to as the Rayleigh regime{\l).

However, in the case of the trapped objects being within one order of 

magnitude of the laser wavelength, as in this thesis, a combination of the 

two regimes can be expected(18,19).

The momentum carried by an individual photon, p, is defined as:

P = j (Eq.2.1)

Where, h = Planck’s constant, X = wavelength of the photon

Momentum is a vector quantity (i.e. direction dependent), therefore if light 

is reflected or refracted it will change the momentum of the light.

8
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Newton’s Third Law (‘every action has an equal and opposite reaction’) 

ensures the conservation of momentum. Therefore, if an object refracts the 

light passing through it and thus changes the light’s momentum vector, the 

object must experience an equal and opposite momentum change. This 

leads to a force acting upon the object.

Optical traps usually, though not always, employ a TEMqo beam mode. 

This is essentially a Gaussian beam; that is a beam having a Gaussian 

intensity profile across its optical axis, in both directions (x and y) 

orthogonal to its propagation.

The forces produced by this type of beam passing through an object can be 

split into two components:

- Scattering forces

- Gradient forces

The gradient forces are responsible for trapping the object in the x and y 

planes whereas the scattering forces are responsible for Lapping the object 

in the z dimension (where the z dimension is the direction of propagation 

of the laser beam and the x and y dimensions are perpendicular to this).

The gradient forces also arise from the scattering of photons, as in the 

scattering forces. However, the manifestation of these forces is dependent 

upon the gradient of the laser intensity profile. This is usually a Gaussian 

(as shown in Figure 2.1). These forces operate in the x-y plane, 

perpendicular to the direction of propagation by the laser. This force is a 

restoring force and acts like a Hookean spring. Although the bead may be 

continually ejected from the centre of the trap by thermal (Brownian) 

motion, the gradient forces will continually restore the bead back to the 

centre of the trap (as shown in Figure 2.2).

9
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Figure 2.1: A TEMoo mode beam. Also known as a Gaussian beam.

(a) (b)
Light intensity proffle Light intensity profile

Figure 2.2: Taken from (12). The ray optics regime of optical trapping. 

The black arrows show the photon propagations. The grey arrows show the 

resultant force experienced by the bead as a result of the photons.

10
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Figure 2.2 (a) Shows a schematic of a transparent bead within a laser beam 

with laser intensity increasing from left to right. The light entering each 

side of the bead is consequently of different intensities leading to greater 

refraction in one direction (left) than the other (right) and thus a greater 

reactive force upon the sphere in one direction (right) over the other (left). 

The black arrows represent the direction of the light. The grey arrows 

represent the forces exerted upon the bead by the refracted rays. As these 

forces do not balance the overall force on the bead is to the right, i.e. 

towards the area of highest laser intensity light and also slightly 

downwards. Figure 2.2 (b) Shows a schematic of a transparent bead in a 

stable trap. The lateral (x and y) forces balance due an equal amount of 

photons being refracted either side the bead’s centre. The reactive forces 

caused by the refracted light, shown by the grey arrows, balance, leading to 

zero net lateral force upon the bead. The grey arrows indicate a small 

upwards force which will push the sphere up to the focus of the beam.

The scattering forces are perhaps less easy to understand than the gradient 

forces. These forces are generated in the same way as gradient forces, from 

scattering of photons by the sphere.

There are two basic ways in which the photons can be scattered: reflection 

and refraction. Upon incidence to the bead a percentage of the photons will 

be reflected entirely at the first surface. For highly transmissive materials 

(such as silica glass or polystyrene used throughout this study) this 

percentage is very small. On being reflected, a photon changes direction 

so, through conservation of momentum, it imparts a large proportion of its 

momentum to the bead in the direction of laser propagation. The forces 

produced by reflection alone would cause the bead to be pushed ‘down’ the 

laser axis away from the laser source. However, the forces produced by 

refracted photons being scattered as they leave the bead, now travelling in
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a different direction (and thus momentum) to that of when they entered the 

bead, can produce a force ‘upwards’ (dependent upon the position of the 

laser focus) i.e. back towards the laser source. If the resultant scattering 

force produced by the refracted photons outweighs the force produced by 

the reflected rays then a stable trap will exist. In the early optical traps the 

gradient force (7) was quickly established but the reflective forces 

outweighed the refractive forces leading to beads being trapped in x and y 

but pushed along the axis of the laser. This led Ashkin to use two counter 

propagating lasers of equal power to push against one another with the 

result being an optical trap between the two (20). Although successful this 

was not satisfactory to Ashkin who would correctly identify that the 

refractive force element of the scattering forces could be increased if the 

laser was focussed using a high numerical aperture microscope objective 

(10). This idea gave birth to true single beam optical traps (or alternatively 

optical tweezers.)

2.2 Force Measurement with an Optical Trap

2.2.1 Introduction

Optical tweezers offer a unique method of measuring extremely small 
forces. Forces of the order of pN (10"12N) are typically achieved by many 

optical tweezer setups (21). The ability to measure forces on this scale 

accurately is one of the most exciting aspects of the technology. As many 

of the forces involved in biological materials are of a similar order, this 

technology has allowed for the precise measurement of forces in a wide 

variety of biological objects (22).

12



Joseph L Croft Chapter 2 - Literature 
Review and State of the Art

However, as with any measurement tool, before forces can be measured 

accurately, the system must first be calibrated.

Firstly it is important to establish which force is being measured. In optical 

trapping there are basically two main forces which can be measured. The 

most common, as it is frequently used in many biological applications, is 

the ‘trap stiffness’ of the trap. This is essentially a measurement of the 

spring constant, k, as an optical trap generated from a Gaussian beam 

operates like a Hookean spring and thus follows Hooke’s spring equation 

(23)(24):

F = —kx (Eq.2.2)

Where:

k = trap stiffness, x = displacement of the bead from the trap’s equilibrium 

position, F = force exerted by the trap on the bead.

The second possible force measurement is the ‘escape force’. This is the 

force required to remove the bead entirely from die trap.

The trap can be considered as a potential well; with the trap stiffness being 

partially dependent on the steepness of the well (in pN nm"1) whereas the 

escape force is dependent upon the depth of the well. So a trap with high 

trap stiffness will have a very steep gradient ‘well’ and a trap with a high 

escape force will have a deep well though not necessarily with steep 

‘walls’.

13
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Figure 2.3: A graph to represent the forces of an optical trap. The escape 

force is the ‘depth’ in pN of the trap. The trap stiffness is affected by both 

the gradient and width of the well.

As optical tweezers operate most commonly in a liquid (specifically water 

for the work in this thesis) there are two main principles of force 

calibration:

1. Based on Stokes’ Law for the drag force - which is made up of two

methods based on 

the same principle.

2. Based on monitoring the dampening of Brownian motion of an 

object by the laser beam, which again is made up of two methods, 

as discussed in the next section.

Both methods operate on the principle that an optical trap can be viewed as 

a spring with a spring constant, k, and will adhere to Hooke’s Law
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(Eq.2.2). These two methods offer alternative ways of establishing the 

spring constant, k of a trap.

2.2.2 Stokes’ Law Method of Force Calibration and Measurement

2.2.2.1 Stokes Method 1 - Simple Drag

Stokes’ Law was derived by George Gabriel Stokes in 1851(25). The law 

is an expression to find the frictional or drag force on a spherical object 

with a very small Reynolds number (and by definition very small diameter) 

in a viscous fluid.

Stokes’ Law is:

F = 67irfrv (Eq.2.3)

Where:

F - the drag force on the sphere (N), rj = viscosity of the fluid (kg m"1 s 

r = radius of the sphere (m), v = velocity of the sphere in the medium (m s" 

*)

As small spheres of the micro scale are available commercially with a 

known radius and water has a known viscosity, the ding force is only 

dependent on the velocity of the flow of the water. Hence, the greater the 

velocity of the water flow past the trapped microsphere ~ the greater the 

drag force exerted on the microsphere.

Consequently, as the trapped bead can be moved through the surrounding 

medium at a known velocity (in practice it is the medium that is moved 

around the fixed trap position) measuring the displacement of the sphere
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from the trap centre allows for the quantifying of the trap stiffness using 

Hooke’s law (Eq.2.2).

This can be repeated at a variety of velocities to obtain a characteristic 

trendline for k, the trap stiffness.

In practice there are some drawbacks to this method. The most obvious of 

which is that for accurate results, there needs to be a precise knowledge of 

the viscosity of the water. This is difficult in that viscosity is highly 

dependent upon temperature and thus any temperature change during an 

experiment would lead to an inaccurate result. Attempts to measure the 

temperature during an experiment are also difficult for a variety of reasons. 

However, even if the temperature of the sample could be monitored during 

the experiment these results might not be meaningful as it is possible that 

localised heating would occur in the region of that trap, the overall effect of 

which would be minimal with regards to the entire sample (26). Secondly, 

the sample is not entirely water; it usually has a small quantity of surfactant 

added and also contains the microspheres, these constituents will, albeit 

only to a small degree, affect the viscosity of the medium. Consequently, 

this method of force calibration is limited in its accuracy, but does have 

some major advantages - in that is simple and easy to perform.

2.2.2.2 Stokes Method 2 - Stage Oscillation

This common calibration method involves the same principles as the 

standard Stokes’ law method set out above. However, rather than translate 

the stage in one direction, the stage is oscillated. The force due to viscous 

drag is known from Eq.2.3. However, unlike the previous section where a 

set velocity is inputted, in this method, the variable velocity is inputted.
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X = X0 Sin(<5#) (Eq.2.4)

Equation 2.4 represents the position of the stage, x, with time, t, at a 

frequency, co, from an initial stage position xq. As the stage position will 

mirror its velocity, he. at its peak displacement it reaches zero velocity and 

at its zero displacement it will be at a maximum velocity, its velocity can 

be expressed thus:

V = CQXq cos(tf#)

Now substituting (Eq.2.5) in (Eq.2.3) gives:

F = 67rijrG)xQ cos(vt^)

(Eq.2.5)

(Eq.2.6)

The signal, S, from the QD, should theoretically follow:

S = Atf)cos(tftf) (Eq.2.7)

This signal from the QD, S, can be measured at a series of frequencies, to 

establish a series of amplitudes Aco values which produce a series of values 

for the constant, A, using which an arithmetic mean can be found.

With A now known, (Eq.2.7) can be substituted into (Eq.2.6) to give:

F _ 6mjrx0 s 
A (Eq.2.8)

With all the constants and variables in (Eq.2.8) now known, they can be 

substituted for a calibration factor H:
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F = HS (Eq.2.9)

Thus, for any signal, S, from the QD an associated force can be found(27).

There are variations to this method, employing a triangular wave instead of 

a sine wave or by displacing the stage a singular known distance at speed 

while measuring the response time of the trapped sphere from the QD 

output.

2,2.3 Brownian Motion Method of Force Calibration

2.2.3.1 Method 1 - Equipartition Method

This method, rather than attempting to ignore or minimise the inevitable 

thermal/Brownian motion, actually harnesses it to quantify the forces being 

exerted on a bead by an optical trap. This method is also sometimes 

referred to as the Equipartition method. In short, it involves accurately 

monitoring the position of a trapped bead with time. Then, by calculating 

the variance or standard deviation of the bead’s position, the extent to 

which the thermal motion has been dampened can be quantified. For 

example, for a loosely trapped sphere, the Brownian motion will be much 

larger than for that of a tightly trapped sphere.

The formula used to translate the measured thermal fluctuations into a trap 

stiffness value is called the equipartition theorem and holds true for a 

particle bound in a harmonic potential (28)(29):

kBT = ka2x (Eq.2.10)

Where ks = Boltzmann Constant
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T = Temperature (K)

gx2 = variance in position of the sphere

k = trap stiffness

As thermal fluctuations are very small (nm scale) this method can only 

employed if the position of the sphere can be accurately tracked. Indeed, 

the rate of thermal fluctuations in position mean that the position must not 

be merely tracked accurately, but also at a very high bandwidth (e.g. 

1kHz). Until recently this need for very high bandwidth data capture meant 

a quadrant detector (QD) (27,30-32). However, the development of high 

frame rate cameras, alongside increasingly powerful computers has 

provided another option for the researcher. An interesting comparison 

between object tracking with a quadrant photo diode (or QD) and a high 

speed camera was performed (33), This study showed that although the QD 

remains the more accurate option, the high speed camera can measure 

object position to an ‘accuracy of the order of 10 nm with a bandwidth of a 

few kilohertz’. The camera also has the advantages of being able to track 

multiple particles simultaneously and of being able to be calibrated more 

easily than a QD.

2.2.3.2 Method 2 - Power Spectrum Analysis

As with the previous method of determining trap stiffness, this method 

involves holding a sphere in a trap while monitoring the sphere position 

and then analysing the thermal motion of the sphere.
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For spheres of known radius, knowledge of Brownian motion in a 

harmonic potential can be harnessed. The equation of motion of a trapped 

microsphere can be expressed thus (29):

Y^y + kK = F(t) (Eq.2.11)
at

Where k is the trap stiffness, x is the sphere position and y is the drag 

coefficient, defined thus:

Y = 67T/lr (Eq.2.12)

Where p is the viscosity of water and r is the radius of the sphere.

F(t) is produced by thermal fluctuations, thus it has two significant 

properties(34):

1. Its fluctuations are random

2. Its mean equals zero

It has been shown that through Fourier analysis, a one sided power 

spectrum of the thermal fluctuations, which has characteristic features of 

the trap stiffness, can be produced (12,30,32).

Taking the Fourier transform of both sides of (Eq.2.11) gives:

2^(/c -if )X(f ) = F(f) (Eq.2.13)

Where, fc, the characteristic comer frequency is defined:

fc =
k

2t?y (Eq.2.14)

Therefore, by finding the comer frequency, (sometimes referred to as roll 

off frequency) fc, of a power spectrum of the thermal fluctuations of a 

trapped sphere, the trap stiffness, k can be found.
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The comer frequency, fc

Frequency (Hz)

Figure 2.4: A single sided power spectrum of a sphere’s position showing 

the characteristic comer frequency, fc.

2.2.4 Previously Achieved Force Measurement Results

Much of the work undertaken in this area has been in the biological arena. 

However, this work will focus on more fundamental variables, such as how 

the force exerted on the microsphere is affected by the sphere diameter or 

laser power.

It is also worth noting that some studies use the dimensionless trapping 

efficiency, Q, as a way of quantifying the quality of the trap as opposed to 

conventional the more conventional method - trap stiffness (35).

Q is defined as such:

nQP
c

(Eq.2.15)

Where:

F = Force (piconewtons), n = the refractive index of the surrounding 

medium, P = the laser power (mW), c = speed of light in free space
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Simmons et al produced one of the early experimental studies on trapping 

forces for such fundamental variables (32). In their work they investigated 

the bead diameter and laser power’s effect on the trap stiffness. They also 

investigated how the escape force (the depth of the potential well) varies 

with laser power:

• 100 mW
■ 52 mW
a 13 mW

Figure 2.5: Taken from (32). Showing the effects of both the bead 

diameter and laser power on the trap stiffness.

m NO ISO 14ft 10ft

Figure 2.6: Taken from (32). Demonstrating how the escape force 

increases proportionally with laser power.

Wright et al reported a study which aimed to evaluate the accuracy of the 

ray optics model of optical trapping of polystyrene and silica microspheres
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by comparing their model with actual results (15). They found the ray 

optics model (16) matched very closely with experimental results in the 

axial direction (z axis/axis of laser propagation) and reasonably closely in 

transverse forces (x and y axis) for spheres greater than 10pm with a laser 

wavelength of 1064nm. For spheres of 1pm diameter, the transverse forces 

were comparable but the axial forces measured were considerably stronger 

(5x) than the model suggested (15). Wright’s study also considered 

microscope objectives of different numerical apertures (NA) and showed 

strong evidence that the NA was a significant factor on the axial trapping 

force generated by the laser.

Alongside the experimental data produced, there have been many 

mathematical approaches, with various modelling papers produced 

analysing the forces in optical trapping (15,36-42). Nieminen et al have 

shown mathematically how the forces experienced by a trapped object 

change with the shape of the object. They considered polystyrene spheroids 

and cylinders of varying aspect ratio and showed that the shape of the 

object becomes less significant upon the forces experienced, the smaller 

the object. Furthermore, they found little difference in the forces 

experienced by spheroids versus cylinders of equivalent aspect ratio (42).

2.3 Overview of Applications of Optical Traps

2.3.1 Introduction

This section of the literature review will look in detail at the various 

applications of optical traps. A large proportion of optical trapping 

applications have involved biological applications, these will be only 

addressed in section 2.4.5. However, the main pmpose of this review, and
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indeed this thesis, is to look at possible engineering applications for the 

optical trap.

2.3.2 Engineering Applications of Optical Traps

Although optical trapping was first fully achieved (i.e. with only one beam 

and trapping in three dimensions without the assistance of gravity) in 1986 

(10), there has since been a surprisingly small amount of work with optical 

traps in the engineering field. This may well be due in part to optical 

trapping naturally lending itself to biological applications. The forces 

involved in optical traps were quickly established to be of a similar order 

(= pN) as those involved in biological material (16,19). This fact, together 

with the need for optical traps to operate in solution, naturally led 

researchers to look, for the most part, towards biological applications for 

new and novel applications. However, there have been a number of 

interesting studies in which the optical trap has been used as an engineering 

tool across a wide range of engineering based applications.

Ghadiri et al have developed a microfabrication technique through the use 

of optical trapping (43). They used an infrared laser to trap and hold an 

array of polystyrene microspheres through the use of a Spatial Light 

Modulator (SLM). Their sample consisted of 12jxm spheres coated in the 

protein Streptavidin (SA) and 3.5pm spheres coated in the vitamin, Biotin. 

When put in contact Streptavidin and Biotin form strong bonds (the 

strongest non-covalent binding known) including hydrogen bonds. The 

smaller Biotin coated spheres were used as ‘binding parts’ to connect the 

larger Streptavidin spheres.
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Figure 2.7: Taken from (43). A 2x3 array of the Streptavidin coated 12mm 

polystyrene spheres. Joined by the Biotin coated 3.5mm polystyrene

spheres.

As soon as the Biotin and the Streptavidin come in to contact a bond is 

immediately formed. Moreover, the bond formed is then strong enough to 

withstand conventional optical forces in the piconewton range. So once 

built, these are stable structures which can be added to further but not de­

constructed.

Chapurlat et al successfully devised a method of joining microspheres in an 

optical trapping environment (44). They were able to join the spheres by 

using a novel material for the spheres. They made the microspheres by 

‘salting out of hydrophilic resin, ENT-3400\ They then overcame some 

difficulties with the wide range of diameter spheres produced by this 

process. Having successfully established a population of microspheres with 

a similar diameter they were then able to link the microspheres selectively 

to each other using a UV source, as seen Figure 2.8.
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Figure 2.8: Showing the produced ‘tethered tool’. The darker top left 

comer of the tool is fixed to the surface. The rest of the tool can be 

manipulated using several optical traps using SLM. Taken from (44).

The Glasgow optical tweezers group has provided many excellent pieces of 

work in the wider optical trapping field largely specialising in developing 

the capabilities of SLMs through their various computer generated 

hologram programs. Their ‘micro hand’ work (see Figure 2.9) is perhaps 

the most relevant to engineering applications. They managed to link 

directly the movement of the controller’s actual hand, or more specifically 

finger tips, to the movement of silica spheres which could be moved in 

such ways to manipulate metallic materials through the use of an SLM and 

ultra-fast hologram regeneration (45).
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Figure 2.9: Taken from (45). Showing the split screen user interface and 

trapped beads (5|im diameter). The microhand is used to select and 

manipulate the position of an irregularly shaped and opaque chrome

particle.

Glasgow’s LabView based program was able to take the input video from 

the left hand side of Figure 2.9, ‘see’ the four white spots on the user’s 

thumbs and the index fingers, then produce a hologram for the SLM to use 

in order to produce trapping sites at the same relative distances apart. 

Moreover, the program would constantly update and refresh the hologram 

as any movements in positions of the white dots were detected.

The Glasgow group also achieved some very interesting results in the work 

to develop and assemble ‘micro probes’ using optical trapping (46). They 

first identified a common problem of using microspheres as probes for 

force measurement that using smaller microspheres means greater 

Brownian motion of the sphere and thus less position control; and using 

larger microspheres as probes leads to imprecise knowledge of the 

interaction area between the side of the sphere and the material being
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probed. Having identified this problem, they attempted, with considerable 

success, to assemble ‘nanorods’ which included microspheres to act as 

‘handles’ so that they could then be manipulated via holographic optical 

trapping. They employed the Biotin-Streptavidin bond method suggested 

previously, coating the silica microspheres in Streptavidin and the 

nanorods in Biotin:

Figure 2.10: 2|im diameter silica spheres joined with a 300nm diameter 

nano rod which is approximately 12jo.m in length. The red circles denote 

the locations of the optical traps. By moving these trap positions the probe 

can be manipulated. The red circle furthest to left is employed to hold the 

probe tip in focus. Taken from (46).

Perhaps the work most closely associated with the work presented in this 

thesis is that of Ito et al in 2002 (47). There are some large differences such 

as the magnitude and material of the spheres used but fundamentally both 

this work and that of Chapter 5 were about precise placement and fixing of 

objects to a surface through the use of optical trapping. Ito et al used gold 

nanoparticles, of the order of 80nm, optically trapped them and brought 

them down to the surface. The regime of trapping was that of Rayleigh 

scattering due to the size of objects being much smaller than the 

wavelength of the laser (as opposed to the ray optics regime as with the
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work throughout this thesis). A 1064nm beam was used to trap and place 

the objects, and a 355nm UV beam was used for the fixation of the gold 

nanoparticles to the glass substrate.

Figure 2.11: Atomic Force Microscope image of fixed gold nanoparticles 

on a glass substrate. Positioned to form the letter T. Taken from (47).

2.3.3 Other Optical Engineering Processes

It is worth considering the other possible methods of optical engineering 

specifically for micro and nano scale formations and devices.

Over the past decade alternative optical engineering approaches to optical 

trapping have developed via the use of novel chemical microfabrication 

techniques such as two photon polymerisation (48).
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In 2001, Klein et al employed a novel method for creating patterned 

surfaces via direct-write lithography (49). A tightly focused, low power, 

infrared beam was ‘applied to a homogenous precursor solution containing 

soluble reagents’. When the laser was focused precisely on to the glass- 

solution interface it induced the ‘local precipitation of a solid product that 

attaches firmly to the substrate’. This allowed for the production of small 

islands of material by applying the laser for only a small time period or 

alternatively creating continuous lines of material by the translation of the 

stage during a prolonged laser exposure. A range of materials have been 

successfully used such as silver, gold and copper oxide. The use of silver 

potentially offers further capabilities via the use of further chemical 

reactions for the functionalization of the silver surface (49).

30



Joseph L Croft Chapter 2 - Literature 
Review and State of the Art

Figure 2.12: Taken from (49).Showing a) high and b) low magnification 

(SEM) images of a silver line produced by the above explained method. 

Silver line width ranges from 6-10pm.

Two photon polymerisation has become an increasingly significant tool in 

terms of optical engineering in recent years. Conventional 

photopolymerisation was first reported in 1993 (50). A variety of 

structures, including a coil spring (50jum in diameter and 250pm in length) 

and a micro valve, were achieved by selectively curing a liquid resin using 

a UY source. The power of the UV source (Xenon lamp) was selected so 

that the liquid resin would only be cured at the focus. Then by scanning the 

focus of the UY source in x, y and z, three dimensional structures could be 

created. The limit to the resolution of such structures is the smallest 

possible volume that can be cured at a time. This is largely dependent upon 

the ability to focus the light down. This study(50) had used conventional 

one photon absorption of UV light. However, ‘two photon absorption’, a 

process developed by Strickler and Webb using infrared light instead of 

UV light (51), allows for much greater resolution. This greater resolution is 

due to the probability of two photon absorption occurring being much less 

than the probability of single photon absorption. The probability of two 

photon absorption occurring is directly proportional to the light intensity. 

Once a volume has been cured, all of the uncured resin can be easily 

washed away using conventional solvents. The first three dimensional 

structures achieved using the two photon absorption method were achieved 

in 1997 by Kawata et al (52). They successfully demonstrated the 

technique which allowed for the curing of micro scale volumes of resin in 

precise and selectable geometries, as seen in Figure 2.13:
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Figure 2.13: Micro fabricated shape. Taken from (52).

Since then there have been various similar works creating a variety of 

‘micromachines’. The resolution achievable is still being improved upon. 

In 2001, a micro spring (or more accurately a micro oscillator) was 

reported with a spiral diameter of just 300nm (48).

Figure 2.14: Taken from (48). Fully functional micro oscillator which was 

produced entirely using the two photon absorption mechanism. The bead
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on the end of the spring is optically trapped and ‘pulled’ and then released 

to set the oscillation in motion. The scale bar represents 2jJ.m.

Galajda and Ormos employed the two photon polymerisation technique 

alongside conventional optical trapping to construct micro scale devices 

and then used optical trapping techniques as a way of driving their devices 

(53). Using two photon absorption, specially designed optical rotators were 

formed. These rotators were then driven using optical forces:

Figure 2.15: (a) and (c) Show the geometry of the designed optical rotator 

from different angles, (b) Shows the produced device not trapped, (d) 

Shows the rotator trapped and held in focus so as to achieve reasonable

image quality (53).

The above technique is particularly interesting in that it not only using 

optical trapping to construct the device but it then harnesses the photon 

momentum forces, provided by the laser, to actually drive the device.
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2.3.4 Near-field Processing

Traditional optics operate in the far field and follow traditional laws of 

optics. However, near-field optics allow light to be focussed to below the 

diffraction limit. Studies have shown, both mathematically (54) and 

experimentally (55) the successful use of microspheres as near-field lenses 

to focus light down below the diffraction limit to a point of high intensity 

just below the sphere.

In addition to these there have been several interesting studies using optical 

traps to assist near-field processing, perhaps the most successful being with 

the use of Bessel beams to force microspheres down to a surface before 

processing the surface through the trapped sphere. This method allows for 

direct writing straight on to a surface, producing features of the order of 

lOOnm (56). This direct-write approach certainly enhances the versatility 

of the near field process.

The motivation for the interest in near-field optics in this work is the 

possible controlled placement of spheres, through use of the optical trap, 

into a desired array.

Near-field processing of large areas has been restricted to random arrays of 

spheres (55) or self-assembling arrays of spheres (for example hexagonally 

close packed silica spheres (57). This inability to position the spheres in 

any desired array limits the process to arrays that will naturally assemble. 

If optical traps could be employed to position the spheres in a surface this 

could lead to the manufacturing of a reusable device for near-field 

processing. An example of a possible design for such a device is shown in 

Figure 2.16. The precise nature of such a device, the method for
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constructing such a device and the results of the work are discussed in 

detail in Chapter 5.

Unfocussed beam

Glass slide

Embedded 
microspheres, 
act as lenses

Resin
-loooooCcoating

Near-field generated ‘hot-spots’ Substrate

Figure 2.16: An example of what a reusable device for near field 

processing could consist of.

2.3.5 Biological Applications

As referred to previously, the vast majority of applications in optical 

trapping to date have been in the biological field. The ability to address 

individual cells to measure precise forces associated with the cells while 

causing minimal damage to the cells has made the application unique and 

invaluable to researchers in the biosciences field. Although biological 

applications of optical trapping are by no means the focus of this thesis, it 

is important to discuss them in order to put in to context optical trapping as 

a current research tool.

Optical traps have become of particular use in single molecule research 

(58). Forces in standard optical trapping systems are usually of the order of
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piconewtons. This is of the same order as forces associated with biological 

cells. Most cells are highly transmissive to infrared light, and are thus, able 

to remain undamaged when subjected to such wavelengths. Hence making 

optical trapping well suited for biological applications (22).

As with much of the work within optical trapping, Ashkin et al led the 

way. They first trapped tobacco mosaic virus using approximately 120mW 

of an Argon laser without causing any clear damage to the virus (13), 

manipulated individual cells (59), and significantly, first measured the 

force of cell organelle movement inside a living cell (60).

More recently, holographic techniques, such as spatial light modulators 

(SLMs) have been harnessed to achieve cell sorting capability (61-63)

Guck et al harnessed two counter propagating beams to produce an optical 

setup capable of stretching cells along the optical laser. Furthermore, 

through the use of a microfluidic system they were able to give the system 

high throughput capabilities (64).

A variety of different cells sorts have been probed, using optical trapping, 

to learn about the mechanical properties of a cell. Such cell types include 

red blood cells (65), live sperm cells(66-68). Sheetz et al produced an 

important study of the mechanical properties of membranes of migrating 

neuronal growth cones by using an optical trap to pull out membrane 

‘tethers’and measured the required force (69).

For more extensive insight in to optical trapping’s ever increasing role in 

biosciences research please refer one of these review papers, although note 

that they focus on the biological outcomes achieved as oppose to the nature 

and setup of the optical trapping systems used (12,22,70).
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2.4 Summary

Optical trapping has developed from an idea (1) to a widely used 

technology at an impressive rate (70). This literature review has set out the 

way in which the optical trapping technology developed and the 

applications and experiments it has already enabled across many different 

scientific disciplines. As this thesis aims to develop optical trapping from 

an engineering perspective, the literature review has included other optical 

engineering technologies such as two photon polymerisation and near-field 

processing. This literature review puts begins to put into context the new 

work reported in the subsequent chapters. Although much optical trapping 

work has clearly been undertaken, there are still plenty of under explored 

areas. The work presented in rest of this thesis aims to add new and 

significant knowledge to the optical trapping field by approaching optical 

trapping as a whole, considering the development of the trapping system to 

enable new studies a fundamental part of the work. The understanding 

gleaned from this literature review on the fundamental physics behind 

optical trapping will better inform the engineering and experimental 

decisions taken throughout the subsequent optical trapping system 

development and experimental phases of this body of work.
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Chapter 3

System Development and Initial Results

3.1 Introduction

For the experimental work in this research study to be undertaken, an 

optical trapping system had first to be designed and built. Over the course 

of this project a number of different optical trapping setups have been 

conceived although all contain the same set of fundamental components: a 

laser, a high numerical aperture objective and a stage in which to mount 

the sample. In addition to these basic components, there are various 

additional items that can be employed to give the system greater capability, 

such as a spatial light modulator or acousto-optic deflector (for more than 

one trapping site), a piezo electric stage (for greater control over the 

movement of the sample relative to the laser), a quadrant photo diode (for 

high precision monitoring of sphere position), or tracking software (for 

tracking of multiple objects).
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The challenge was set to develop a system with versatile and extensive 

capabilities for the pursuit of new and novel engineering applications. This 

occurred over an extended period as more hardware became available 

which could be integrated into the system and more software was written 

to solve various issues encountered.

As problems and limitations in the system were encountered, solutions 

were found and new hardware was acquired to enhance the current 

capabilities of the optical trapping system. Over the course of this research 

a number of redesigns and rebuilds of the system took place, each time to 

address a particular problem discovered or to enable a new capability for 

the system. The final system would incorporate a second laser source, high 

precision position tracking (though use of a Quadrant Detector), a Spatial 

Light Modulator, a piezo electric stage, capable of nano scale movements, 

mounted upon the existing mechanical micro stage and a diode 

illumination source. This is set out later in this chapter. The system was 

specifically designed for the purpose of exploring innovative engineering 

applications for optical traps.

The system’s development can be divided into four main stages:

1. The Initial Setup

2. Integration of an SLM

3. Addition of Force Measurement Module and Nano stage 

Integration

4. Integration of a Second Laser Line

A discussion on the details and progression of these four stages will be the 

basis for most of this chapter. As new hardware and software are
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introduced their details will be given. The problems encountered during 

this development process will be documented, as will be their 

corresponding solutions.

The final system produced represents significant work and produced a 

unique system which fulfilled the criteria of being both versatile and 

enabling new investigations and new capabilities. Showing the detailed 

progression of the system, from its initial basic setup through to 

completion alongside the motivations for each change/development, should 

enable a greater understanding of the practical use of optical traps, 

including the common optical trapping pit-falls which are not frequently 

referred to in the literature.

3.2 The Progression of the Optical Trapping System Development

3.2.1 The Initial Setup

The original system available at the beginning of this research project was 

a basic inverted optical trapping system which had been constructed to 

specification by Elliot Scientific (71).
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100x, 1.25NA, 
Olympus 
Microscope 
objective

OWIS micro 
Stage drive coming 

m Laser

Figure 3.1: Partially taken from (71). The original inverted optical tweezer

design.

The system consisted of a single green, 532nm, continuous wave, 2W laser 

source delivered via standard optics to a high NA (1.25) microscope 

objective and a mechanical stage capable of micron scale movements of 

the sample.
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Figure 3.2: Initial Optical Tweezer System Setup

Figure 3.3: Cover slip loaded in original sample holder within the system
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3.2.1.1 Hardware

3.2.1.1.1 Coherent Verdi 532nm Laser

The Verdi laser is part of the YAG (yttrium aluminium garnet) family. The 

various forms of YAG make up most of today’s solid state lasers.

Neodymium-doped yttrium orthovanadate or Nd:YV04 (Vanadate) is the 

lasing material used in the Verdi. It is frequency doubled to produce a 

wavelength of 532nm at up to 2W continuous wave. It is a high quality 

laser in terms of its M2 value and bandwidth. It operates with a beam mode 

of TEMOO and has an M value of less than 1.1. The laser also possesses a 

bandwidth narrower than most lasers. Although most lasers quote a 

wavelength to an accuracy of individual nanometres, i.e. a 1064nm or 

532nm lasers, in reality lasers usually occupy a broader range of 

wavelengths than such names imply. The specification of this laser quotes 

a linewidth of <5MHz which is equivalent to approximately 5 

femtometres. Thus, in the case of the 2W Coherent Verdi it can be 

considered a true single frequency laser.

3.2.1.1.2 OWIS Micro Stage

This is a mechanical motorised stage capable of micro scale movements in 

x, y and z. The micro stage is controlled through a basic LabView software 

interface provided in the initial setup. This software allows for the use of a 

joystick to manoeuvre the stage in x, y or z. The stage and software 

provide the capabilities of moving the stage at a vast range of speeds. The
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minimum and maximum stage velocities are approximately 0.002 mm s'1 
and 1 mm s"1 respectively.

3.2.1.1.3 Microscope Objective

The microscope objective used in the system is an Olympus oil immersion 

objective. Its magnification is 100X and when used with an oil interface, its 

numerical aperture, NA, is 1.25. As discussed in chapter 2, having a high 

numerical aperture (NA) is critical for full three dimensional optical 

trapping. Without a high NA objective, trapping can be achieved in x and y 

but not in the z dimension (where z is the direction of propagation of the 

laser beam) as in (7). A critical factor in the use of a high NA objective, 

overlooked in the early stages of this work, is that it means a small working 

distance from the tip of the microscope objective to the focus, 0.150mm for 

this objective. Numerical aperture is a dimensionless number and is given 

from:

Numerical Aperture (NA) = n(sin p) (Eq.3.1)

Where, n is the refractive index of the medium between the top of the 

microscope object and the glass cover slip. This is usually ah or oil. p is 

half of the angular aperture, see Figure 3.4.
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HlghNA
objective

Low NA 
objective

Figure 3.4: The tightly focused nature of a beam from a high NA 

objective. Showing how the working distance changes with NA.

As can be seen from Eq. 3.1, when the imaging medium is air (which has a 

refractive index = 1), the NA is dependent only on the angle, p., shown in 

the above figure. As the sine of any angle has a maximum value of 1, the 

theoretical limit of NA, for an objective with air as the imaging medium, is 

1. Hence, to achieve the high NA required for optical trapping, a different 

medium with a greater refractive index must be used. Modem microscope 

objectives are designed for a specific medium, such as water, which has a 

refractive index = 1.33, to achieve a greater NA.

The microscope objective employed in this system is an oil immersion 

(which has a refractive index = 1.51) objective. This implies that in theory 

an NA of 1.51 could be achieved for a sin (p) value equal to 1 (from p = 

90°). In practice the majority of oil immersion objectives are only able to 

achieve NA values up to 1.4.
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The NA of the objective in the system is quoted by the manufacturer as 

equal to 1.25. From Eq.3.1, this implies a ji value equal to approximately 

equal to 56°.

3.2.1.1.4 CCD Camera

The charge coupled device (CCD) camera employed in the system is a 

Watec LCL-211H. It is a high resolution (480 TV lines), high sensitivity 

camera which provides the capability to acquire accurate and detailed real 

time images at the focal plane of the optical trap within the sample. The 

camera operates at approximately 30 frames per second.

3.2.1.1.5 Mechanical Shutter

A mechanical shutter sits in the laser line to provide usability and safety to 

the system. The shutter is addressed electrically and can switch between 

closed and open modes either through manual operation or at a pre­

programmed rate. The shutter is a Thorlabs SC 10.

3.2.1.1.6 Computer System

The computer system used throughout this work was an Intel Core2Duo 2 

GHz system with 2 GB of RAM. This level of processing power is 

required in order to run multiple LabView programs, especially the
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‘memory heavy’ Fourier transform programs discussed in the next section 

such as Blue Tweezers. The system included two monitors. One monitor is 

used to display the live footage obtained from the CCD camera. The other 

monitor is used to display the various LabView programs in operation 

during use of the optical trap.

3.2.1.2 Software

LabView is a graphical system design software package. It enables the user 

to quickly develop and adjust project specific programs that can 

communicate with and coordinate various pieces of hardware, as well as 

acquiring data.

The software in the initial setup consisted of two programs:

1. The ‘Joystick Axis Control(l)’ program:

This program was written in LabView, to allow for the manoeuvring of the 

mechanical micro stage in x, y and z, via the use of a joystick at a variety 

of speeds. The program included the use of the ‘slide bar’ on the joystick to 

give a spectrum of velocities from which to select.

2. The ‘Vision(l)’ Program:

This basic program was written in LabView through use of LabView’s 

Vision package. This program provided the capability both to access and to 

view the video footage being acquired by the CCD camera in the system.
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3.2.1.3 Initial Results and Discussion

This was a basic optical trapping system consisting of the fundamental 

elements but nothing further. Moreover, although consisting of all the 

fundamental components, the optical trap did not work. An influence over 

microspheres from the laser was observed but true optical happing, the 

tight holding of a microsphere in the focus of the laser, all three 

dimensions, for an indefinite period of time, was not achieved. This led to a 

period of investigation to solve why happing was not occurring. Initially, a 

full realignment process of the laser was undertaken. To an extent, this 

appeared, through manual observation, to improve the quality of trapping 

in x and y. However, this was still less than satisfactory optical trapping in 

these dimensions and there was no trapping achieved in the z dimension. 

Essentially, when the laser was passed near a microsphere, the sphere 

would be seen to be ‘pulled’ toward the centre of the trap and then 

‘pushed’ away along the axis of the laser. Clearly the laser was impacting 

upon the spheres as desired in x and y, but in z, the sphere was being 

pushed rather than happed.

It was postulated there could be numerous explanations for this and each 

was to be assessed to establish the source of the problem:

First, the laser wavefront was profiled; see Figure 3.5, through use of an 

LBA (Laser Beam Analyser) to check that the beam mode was of the high 

order specified by the manufacturer. The optical forces responsible for 

conventional optical happing are highly dependent on a Gaussian beam for 

generation of a gradient force.
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As can be seen in the subsequent image, the raw beam of the Coherent 

Verdi was shown to be approximately 3mm in diameter, as was expected

from the Verdi laser specification.

-Quantitative—90/10 Knife Edge
Total

Current Units

4.165.506
K Above Clip •6.51 %
Peak 2 519e*02
Min -1 797e*00
Peak Loc X 3 276e*03 um
Peak Loc Y 2 860e*03 urn
Centroid X 3 276e*03 um
Centroid Y 3 061e*03 um
Width X 3 163e»03 um
Width Y 2.B92e*03 um
Diameter 3.027e*03
—Gaussian—Whole Beam—

um

Centroid X 3.291 e»03 um
Centroid Y 3 076e*03 um
Width X 3 060e*03 um
Width Y 2.799e*03 um
Height 2 385e*02
Deviation 4 913e*00
Correlation 0 885

Figure 3.5: LBA image of the raw beam of the 532nm Verdi before the 

microscope objective, showing a beam diameter of approximately 3mm. 

and a slight ellipticity in the beam; with the beam wider in the x dimension

than in the y.

This image confirmed the high quality of the laser beam mode and thus 

ruled out the possibility that it was the laser causing the lack of trapping 

through diminished beam mode quality.

Secondly, through a good understanding of how lasers exert forces in 

optical traps, as described in Chapter 2, it was hypothesized that the 

gradient forces were sufficient, causing the trapping in x and y, but the 

scattering forces, responsible for trapping in the z dimension, were too 

small. So the scattering forces would need to be increased to achieve true 

optical trapping in three dimensions. The insufficient scattering forces are
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caused by using a microscope objective with an insufficient numerical 

aperture or by not filling the back surface of the microscope objective 

aperture. It has been suggested in some studies that overfilling the back 

aperture of the microscope objective is preferable (72). This work 

acknowledges that overfilling the aperture will lead to a degree of power 

loss but in a process which requires very small powers this is not a major 

problem. Furthermore, the overfilling of the aperture ensures a high flux of 

photons are delivered from the outer edges of the beam into the outer edge 

of the aperture. In a high NA objective, the photons in the outer regions of 

the aperture are refracted the most and thus generate the largest scattering 

forces due to the high angles with which they are incident upon a sphere. If 

the back aperture of the microscope objective is only partially filled, as 

here a 3 mm diameter laser beam incidences on a 5mm diameter back 

aperture, no photons will enter the objective at the edges of the aperture, 

and thus will not experience the maximum possible refraction from the lens 

configuration within the objective.

Consequently, it was decided to install a beam expander to increase the 

beam diameter from the raw beam’s 3mm to 6mm, i.e. greater than the 

5mm diameter of the microscope objective’s back aperture.

This beam expander consisted of two lenses arranged in a standard 

Galilean beam expander set up, as shown in the subsequent figure.
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Focal Length = -25 Focal Length = +50

Expanded BeamRaw Beam

Figure 3.6: Galilean Beam expander setup. Producing a magnification 

factor of 2. Expanding the raw beam from approximately 3mm to 6mm.

With the above beam expander now in place, the back of the microscope 

objective was now being overfilled, thus ensuring energy was located in 

the edges of the beam, which were responsible for generating the bulk of 

the scattering forces, which provided trapping in the z dimension. 

However, with the expander in place, trapping in the z dimension remained 

unsatisfactory so the investigation continued to find the source of the 

problem.

Minor ablation damage in the plastic cover area surrounding the back 

aperture of the objective was observed. It was suggested this might be the 

source of the issue, thus causing the microscope objective not to realise its 

quoted NA value of 1.25. An investigation was undertaken employing an 

alternative microscope objective. This alternative microscope objective 

(Nikon, 0.9NA, xlOO) had a smaller NA than is usually required for optical 

trapping (at least 1) but the reasonable quality of the objective and its 

relatively high NA implied it might be of use at least to establish if the 

minor damage on the original objective was causing the trapping problems.

Surprisingly, with this lower NA objective in the system, the quality of 

trapping in the x and y dimensions improved considerably but again z
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trapping was less than stable. In half dried out samples and thus shallow 

conditions, the beads are unable to move in z hence trapping can be 

achieved. However, this would not be considered true optical trapping. 

Additionally, while using this lower NA microscope objective an 

interesting phenomenon was observed:

Figure 3.7: Left - The beam profile produced by the lower NA objective. 

Right - A 2.44jim silica sphere trapped and the centre of the trap within a 

further semi-circle of trapped spheres, trapped due to the optical landscape

on the left.

This profile is seen when the laser is slightly out of focus relative to the 

focus of the camera. This annular profile is caused by 

constructive/destructive interference of the laser with itself. Although the 

use of this second objective gave the interesting result shown in Figure 

3.7, it was clear that reducing the NA of the microscope objective would 

not be helpful in attempting to generate the necessary scattering forces to 

trap in the z dimension, thus the original high NA (Olympus 1.25) 

objective was returned to the system.

The cause of the z dimension trapping problem was eventually established 

as the thickness of the cover slips. The thickness of the cover slips used up
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to this point in the research was measured, using digital calipers, to be 

0.19mm, When these cover slips were replaced with marginally thinner 

cover slips, measured as 0.17mm, the effect was significant. With the 

thinner cover slips employed, trapping in the z dimensional was now 

stable. The cause for this significant change was the position of the laser 

focus relative to the cover slip. For example, if too thick a cover slip is 

used, such as the 0.19mm cover slip, the focus of the beam would occur 

inside the glass cover slip. Thus, within the water medium the laser is 

already diverging at a rapid rate, meaning that a degree of x and y trapping 

may still be achieved but that the microspheres appear to be ‘pushed’ away 

from the objective towards the top surface and out of the visible region of 

the sample. Whereas, once the thinner, 0.17mm, cover slip was used, the 

focus occurs beyond the cover slip, and thus within the sample medium. 

Note the small difference between the dimensions of the successful and 

unsuccessful cover slips. A difference of 20|im can make a significant 

difference. In theory it is also possible to have a cover slip that is too thin 

leading the laser focus to be beyond the water region of the sample though 

this is unlikely given the common thicknesses of cover slips and usual 

working distances of the high N.A. objectives.

3.2.2 SLM Integration

With high quality and efficient trapping now being achieved on the system 

it was time to enhance the capability of the system. The possibilities of 

optical trapping are greatly increased if multiple traps are available 

simultaneously. This can be achieved through use of one of two devices, a 

spatial light modulator herein referred to as SLM (73,74) or an acousto­

optic deflector herein referred to as AOD (75,76). AODs operate via time
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sharing the beam amongst multiple spots. Whereas, SLMs operate by 

taking a single laser beam, and producing multiple spots simultaneously 

through the use of a hologram.

SLMs also have the capability to modify the intensity and phase of a beam. 

More recent work allows for the modification of the polarisation of a beam 

when in conjunction with other optics such as half and quarter wave plates 

(77).

SLMs are a swiftly growing technology with a wide variety of applications 

in photonics such as laser parallel processing (78,79), pulse shaping (80) 

and spatial beam shaping (81),(82),(83). They have also been used in 

optical trapping applications, to separate a single beam into a desired array 

of multiple diffracted spots in two or three dimensions (45,73,84-93).

An SLM surface is made up of an array of liquid crystals each of which 

can be individually addressed electrically to cause a change in its refractive 

index.

By selecting the correct liquid crystals to influence, the SLM can be 

operated as a programmable diffraction grating but allowing for much 

greater control than a traditional grating (86,91). The programs Blue 

Tweezers and Holoeye used in this thesis, both provide the capability to 

generate holograms to produce desired diffraction patterns. The generation 

of the holograms (usually referred to as computer generated holograms or 

CGH) is done through the use of inverse Fourier transforms. The 

mathematics behind the production of these CGHs is a whole field of 

research in itself and is not a focus in this work.
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3.2.2.1 Beam Expander and Reducer

In order to achieve the full capabilities of the SLM it was necessary to 

harness the full surface area of the liquid crystal elements. The current 

beam expander in the system is set out in the previous section and had a 

magnification factor of 2. This expanded the beam diameter approximately 

from 3mm to 6mm. The surface area of the SLM was 9.5mm x 14.6mm. 

Therefore to harness the full SLM surface it was necessary to expand the 

beam further. Furthermore, for the SLM to be effective, the hologram on 

the SLM had to be imaged onto the back surface of the objective. 

Consequently, a Keplerian beam reducer was employed so as not only to 

reduce the beam but also to image the SLM onto the back of the 

microscope objective. This made the rebuild complex, as the distance 

between the back of the microscope object and the SLM was now a set 

value. The use of a Keplerian beam reducer was also advantageous, over a 

Galilean equivalent, because, unlike a Galilean, between its two lenses the 

laser reaches a focus; which allows the removal of zero order if required. 

The removing of the zero order can be preferable for achieving multiple 

trapping sites as the zero order can be too dominant over higher order spots 

in terms of power distribution.

Lenses were selected for the beam expander and beam reducer to ensure 

the beam was expanded up to close to the size of the SLM surface and 

reduced down to close to the diameter of the back aperture of the 

microscope objective. The selected lenses are set out in Figure 3.8 and 

Figure 3.9.

The lenses employed in the Keplerian beam reducer had focal lengths of 

+400mm and + 150mm as shown in Figure 3.8.
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Microscope
objectiveFocal Length 400mm

400mm 150mm

Figure 3.8: Keplerian Beam Reducer Setup introduced in the system

Focal Length = -25 Focal Length = +100

Expanded BeamRaw Beam

Figure 3.9: Galilean Beam Expander introduced into the system
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Figure 3.10: The Galilean Beam expander on the optical table 

The magnification of the beam expander and reducer can be found thus:

M =— Eq.3.2
l,

Where:

M = the magnification, lo = the focal length of the objective lens and li = 

focal length of the image lens.

So the Galilean beam expander will expand the beam by a factor of 4. The 

beam reducer will reduce the beam diameter by a factor of 2.67.

Consequently, the beam will be expanded up from its raw beam diameter 

of 3mm up to approximately 12mm at the SLM surface and reduced to 

4.5mm diameter at the back aperture of the microscope objective.
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3.2.2.2 Hardware

3.2.2.2.1 Spatial Light Modulator (SLM) - Holoeye LC-R 2500

The spatial light modulator employed was a Holoeye LC-R 2500. The 

surface of the SLM is a liquid crystal display (1024 x 768 pixels) which 

can be addressed via computer interface. The SLM device was set up on 

the system to image the second computer monitor. SLMs are inefficient 

devices in terms of transmission though this is being improved upon with 

each generation of SLM. This device transmits 50-60% of the light energy 

incident upon it. The active area of the device is 9.5 x 14.6mm. The frame 

rate of the device is 72 Hz.

Adjusts

surface

Figure 3.11: Holoeye LC-R 2500 Spatial Light Modulator
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3.2.2.3 Software

The additional software requirements for this generation of the system 

were two programs for operation of the SLM, Holoeye software and Blue 

Tweezers (86,91) which are set out in the next sections.

A further addition to the software at this stage in the system development 

was the St.Andrews Tracker (or StAT) which allows for the tracking of the 

position of objects, such as silica spheres, from video files (94).

3.2.2.3.1 Holoeye Software

The SLM manufacturers, Holoeye, provide software for the production of 

computer generated holograms, CGH. The software requires input files in 

.bmp format. The software is then able to convert this into a CGH. This 

hologram is then displayed on the SLM producing an image which 

matches the .bmp file.

3.2.2.3.2 Blue Tweezers

The Blue Tweezers LabYiew based program was developed at the 

University of Glasgow specifically for optical trapping applications. Unlike 

the Holoeye software, which requires the CGH to be pre-generated, Blue 

Tweezers generates a CGH which can be altered in real time as the desired 

array of spots is changed manually.
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Figure 3.12: Screenshot of original Blue Tweezers program

The screenshots shown above are part of the LabView based program - 

Blue Tweezers. The green and red circles on the image designate the 

desired location of the trapping sites. These circles can be manoeuvred by 

simple ‘click and drag’ with a mouse (the selected circle turns from green 

to red). As a circle is moved, the produced CGH is recalculated and 

refreshed on the second monitor which feeds directly to the SLM display. 

The SLM display is setup to mimic the second monitor.

Once integrated into the system it became apparent that the usability of the 

system could be increased by amalgamating the video capture and the Blue 

Tweezers software. Thus, a video feed was built into the Blue Tweezers 

software as can be seen in Figure 3.13. This meant that the position of 

each circle could be calibrated with the actual position of the laser spots,
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thus allowing for the user simply to click on a silica sphere and then drag it 

with the mouse. As the circle was translated across the image, the CGH 

would update, and thus, so would the trap position. Moreover, the 

software’s successful integration into the system provided the ability to 

trap multiple microspheres simultaneously, as can be seen in the 

subsequent section.

Figure 3.13: Screen shot of the front panel of Blue Tweezers with a live 

video feed from the CCD camera built in. Showing the 5 generated spots in 

the bottom left quadrant, the central zero order and the ghost 5 spots in the

top right quadrant.

There are several different algorithms for hologram generation within the 

Blue Tweezers software. Each one has a trade-off between accuracy and 

speed. For example, the simpler algorithms such as 'grating and lenses’ 

(73), are limited in accuracy; but can regenerate at a remarkable rate (for 

relatively simple holograms). Whereas, iterative algorithms such as the 

'Gerchberg-Saxton' algorithm (95) are computationally intense and can get 

‘stuck’ mid-calculation especially when attempting to compute complex
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arrays with many different trapping sites. However, once it has finished 

computing, this algorithm invariably produces the higher standard of CGH 

(87). The algorithm selection must therefore be based on a combination of 

the user’s needs and the computational power available. In that for some 

users, a complex array of trapping sites may be required but once generated 

no manipulation is required - in such an instance, the slow nature of the 

Gerchberg-Saxton algorithm is not problematic and it is thus the algorithm 

of choice.

3.2.2.3.3 The St.Andrews Tracker (StAT)

StAT was developed by Graham Milne during his PhD research at 

St.Andrews University (94) . The program was developed as a tool for 

object sorting. It has the capability to track and classify multiple objects. 

However, it also acts as a useful tool for tracking the position of an 

individual object. The accuracy of such tracking is limited by the resolution 

and frame rate of the CCD camera, as discussed briefly in the literature 

review.
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wStAT
St Andrews Tracker

Created by Graham Milne 2003-2009
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Figure 3.14: Screenshot of the StAT program front screen in LabView.
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Figure 3.15: Screenshot of StAT program running. The red squares 

indicate positions where the software is tracking an object that fits the

template.
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In the front screen of the LabYiew based St AT program, a variety of 

parameters can be set. Firstly, it is necessary to select the video file to be 

processed. Next, the frame number to start and finish processing can be 

selected. This is a useful aspect of the program if only part of the video file 

is of interest. Finally, a value described as the ‘minimum match score’ 

must be selected. This value informs the program how close a tracked 

object’s image must match the template’s image for it to be of interest. So 

if the match score is too low, the software will start to track in areas where 

it is clear to the eye there are no objects. Equally, set the match score too 

high and the program will fail to hack any objects or will track objects but 

will repeatedly ‘lose’ and ‘find’ them; each time an object is lost and found 

again a new position file will be created. The output from the program is a 

position file, consisting of the tracked objects position in x and y as 

measured in pixels. Thus, for accurate data, it is important that a tracked 

object remains tracked throughout the entire selected frame sequence, so 

that the position data is outputted as one file, as opposed to a series of files 

each covering a different part of the frame sequence. For the work in this 

report a ‘minimum match score’ of 400-600 was found to give the best 

results when working with uniform silica microspheres. ‘Best results’, in 

that the objects would be hacked by the program for entire video 

sequences, but also that hacking of non-existent objects rarely occurred. 

When the program was run, the first frame of the video was displayed for 

the user to select a template of the object to be hacked (by clicking and 

dragging the mouse to form a square around the sphere to be hacked). The 

nature of the user manually selecting this template brings an error into the 

process, as two runs at the same video will produce marginally differing 

results if two different templates are given.
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3.2.2.3.4 Joystick Axis Control(2)

The original ‘Joystick Axis Control’ program was developed over the 

course of this work. Initially, it was a program simply for communicating 

with and driving the mechanical stage. It allowed the driving of each of the 

x, y and z axes at a series of velocities. Since then a number of new 

functionalities have been added to the program:

• Shutter control - The program can communicate with the 

mechanical shutter in the 532nm laser line. Consequently, the 

shutter can be opened and closed by the simple click of a button on 

the joystick. As well as enhancing the usability of the system; the 

ability to close the shutter easily, and at speed, has safety 

advantages.

• Circle Function - This capability allows the x and y axes to be 

driven simultaneously causing the micro stage to move in a circular 

motion at a set radius and speed. This function was critical is 

enabling the escape speed tests described in chapter 4.

3.2.2.3.5 Vision(2)

Over the course of this research the program was altered and refined to 

give it greater capabilities. It now includes a measurement palette so that 

objects on the screen could be measured in real time using pre-calibrated 

pixel-micron knowledge simply by using the mouse to ‘click and drag’. 

The program also allows for freeze frame image files or video files to be
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taken. These video files were then post processed using other programs 

such as StAT (St. Andrews Tracker) as discussed previously. The program, 

limited by the camera specification, captures video information at a rate of 

30 frames per second.

3.2.2.4 Initial Results and Discussion

Initial work with the SLM and related software showed a significant 

improvement in the system capability. Where previously only individual 

objects could be trapped, multiple objects could now be trapped 

simultaneously, as can be seen in Figure 3.16:

Figure 3.16: Trapping sites denoted by green circles. ‘Five point trap 

array’ on the left and assembled ‘L\ made up 8 individually trapped 

2.44pm diameter silica spheres, on the right.

As well as the multiple spots capability shown in the previous figure, beam 

shaping was attempted using the SLM to create an annular beam profile as
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shown in the next figure. This became a useful tool and is discussed in 

further detail in Chapter 6.

Figure 3.17: Image of SLM produced annular ring. The top right annular 

ring is the real image. The bottom left ring is the ‘ghost’ image with 

considerably less power. In the centre is the zero order which still contains 

over half of the total power.

Initial work with StAT showed that it could be used as a tool to measure 

the standard deviation in the position of a trapped sphere. This work is 

presented in Chapter 4.

3.2.3 Force Measurement and Nanostage Integration

The relatively large minimum steps achievable with the micro stage 

(0.1 Jim open loop) meant that the system was limited in the experiments it 

could carry out. As the work in Chapter 5 of this thesis required the ability 

to bring a trapped sphere down to a surface at a low velocity and thus 

required small minimum step size from the stage further development was 

needed. Additionally, the measurement of forces aspect of optical trapping
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is becoming an increasingly important part of the technology. A large 

proportion of the biological applications harness optical trapping system’s 

ability to measure piconewton forces accurately. Furthermore, a force 

measurement capability in the system could allow for the measurement of 

fundamental aspects of optical trapping forces. Consequently, efforts were 

made to ascertain new hardware to help fulfil the need for greater stage 

position accuracy and force measurement capability. On their arrival a 

further redesign was required to retro fit them in to the system. The rest of 

this section sets out the hardware and software additions at this stage of the 

setup’s progression and the initial results achieved with the new 

capabilities.

3.2.3.1 Hardware

3.2.3.1.1 Thorlabs Nano stage (NanoMax)

The stage had a total travel capability of 4mm while the piezo actuator 

drivers allowed for nano scale precision movements over 20 pm of travel 

in 3 orthogonal axes. The piezo actuators allowed for 5nm step closed 

loop movements when used in conjunction with strain gauges. The piezo 

actuators also allowed for the modulation of the position of the stage at 

high frequency, which is critical in the process of calibrating the force of 

the optical trap.

The stage was operated through use of the T-cube devices or via the 

computer using either the LabView based APT software or custom made 

LabView programs. The nano stage was fitted onto the front of the 

mechanical micro stage. Removing the micro stage entirely from the
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system was considered but the relatively small travel of the nano stage 

would have made the loading and unloading of samples difficult. By 

attaching the nano stage to the micro stage, the micro stage’s large total 

travel could still be harnessed in certain applications, such as when loading 

and unloading samples.

Figure 3.18: The setup showing the custom made sample holder mounted 

on the Nano stage, which in turn is mounted on the mechanical micro

stage.

3.2.3.1.2 T-cube Devices

T-cubes are Thorlabs products which are designed for use with the 

Thorlabs NanoMax stages (see Figure 3.18). The system included:

• Three piezo controllers, one driving each of the three axes on the 

nano stage
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• Two stain gauge readers for tracking the actual position of the 

nano stage. These are attached to the x and y axes.

• One Quadrant detector to monitor the trapped objects position. 

More detail on the quadrant detector is offered in the next section.

The T-cubes are all powered via the T-cube ‘hub’ which has six T-cube 

‘docks’. This hub can be connected to the computer via a USB cable. This 

connection allows the computer to communicate with all six of the T-cube 

devices.

The second way in which the computer can receive information from the 

T-cubes is via the voltage terminals on the side of each T-cube.
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Figure 3.19: The T-cube Hub with the six T-cube devices installed. The T- 

cube hub provides power to the six devices and allows for communication 

between all six devices and a PC.

3.2.3.1.3 Quadrant Detector or QD

The quadrant detector was a PDQ80A (Thorlabs). It was a quadrant 

photodiode array which provided for accurate monitoring of the beam 

position. In addition a sum value was provided of the overall beam power 

incident upon all four quadrants. The quadrant detector detected the power 

arriving at each of its four quadrants and thus, by comparing these relative 

values, provided information on the precise beam position.
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x-axis sensor: x-diff = (Q2+Q3)-(Q1+Q4) 

y-axis sensor: y-diff = (Q1+Q2)-(Q3+Q4) 

Sum: (Q1+Q2+Q3+Q4)

Eq.3.2 

Eq.3.3 

Eq. 3.4

Figure 3.20: Image of the Quadrant detector device (left). Setup of 
the four quadrants for measuring beam position (right).

These equations make certain assumption. Firstly, that the beam is 

symmetrical in both axis. From the beam profile generated in Figure 3.6, 

although not perfectly symmetrical, this is not an unreasonable 

approximation. This sum value provided by the QD is vital for establishing 

the actual position of the laser spot on the photo diode. The following 

example seeks to demonstrate the significance on the sum value. The 

values represent beam powers incident upon a particular quadrant. Their 

units can be considered arbitrary as it is their relative sizes that are 

important:

Consider a situation where the powers incident on each quadrant were:

Q1 =2, Q2=8, Q3=5 and Q4=3. From equations 3.1 and 3.2:

73



Joseph L Croft Engineering Applications of the Optical Trap

This gives an x diff value of (8+5)-(2+3) = 8 

And a y diff value of (2+8)-(5+3) = 2 

The sum value is: 2+S+5+3 = 18

If the beam power was then reduced by half giving Ql= 1, Q2= 4, Q3= 2.5 

and Q4= 1.5 the x diff and y diff values would halve also; giving x diff = 4 

and y diff = 1. Thus implying the spot had moved close to the centre of the 

diode. However, when the sum is considered alongside x diff and y diff it 

is clear this is not the case. The sum in the second case has halved also: 18 

in the initial case but now equal to 9.

Consequently, all x diff and y diff values must be considered as relative to 

the simultaneously recorded sum value.

The QDs high bandwidth, up to 150 kHz, allows for tracking of position 

with sufficient accuracy to monitor the thermal motion (Brownian motion) 

of a microsphere suspended in water. The responsivity of the QD (shown 

in Figure 3.21) is at its peak at around the 970nm however this QD was 

chosen for the system as it gives sufficiently high responsivity for the 

required application at both 532nm and 1064nm.
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PDQ80A Responsivity

Wavelength (nm)

Figure 3.21: Provided by the manufacturer (Thorlabs) showing how the 

responsivity of the PDQ80A model of Quadrant detector varies with

wavelength.

The quadrant detector was installed beyond the sample position. Light that 

passed through a trapped sphere was refocused on to the QD. This method 

is referred to as forward scattered position detection as oppose to back 

scattered position detection. A comparison of the two methods of detection 

has been carried out (96). Due to the high NA objective, the laser light 

leaving the sphere is highly divergent. Therefore, it is necessary to 

introduce a condenser lens after the sample to ‘gather’ the highly divergent 

light and refocus it. A second lens is employed to focus the light onto the 

QD. The setup is shown in Figure 3.22.
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High NA 
objective

Figure 3.22: The Quadrant Detector Setup

3.2.3.1.4 Custom Sample Holder

The previous sample holder shown in Figure 3.3 had no system for fixing 

a sample in position. Furthermore, the newly installed nano stage did not 

have a method of attaching the sample holder to it. Consequently, a new 

sample holder was designed with specific dimensions to give greater 

support and stability to a loaded sample. Additionally, ‘clips’ were 

included in the new design of the sample holder to fix down the sample in 

place, as seen in Figure 3.23.The greater stability enabled by the new 

sampled holder with clips, allowed for increased stability in the height at 

which the sample sat relative to the microscope objective. This ensured 

that the sample remained in the image plane over the camera over extended 

periods of time. Under the previous sample method, over a period of 0-5 

minutes the sample could drift out of camera’s focus.
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Figure 3.23: Custom Sample Holder

The sample shown above is the spacer method of sample preparation. The 

‘black spacer with hole’ is clearly shown. Within the hole, the sample 

solution is placed containing microspheres. The pink coating around the 

edge of the sample is nail polish. This prevents evaporation of the enclosed 

sample and thus increases the life time of the sample significantly. Without 

the nail polish seal, samples routinely ‘dry out’ in 24-48 hours. With the 

seal, samples last for several weeks before ‘drying out’.

3.2.3.2 Software

There was a variety of software needed at this stage in the system 

development. Firstly, Thorlabs provided with the hardware, a software 

package called APT. This user friendly software allowed for the easy 

communication between PC and all six of the T-cube devices via the USB 

connected T-cube hub.
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Figure 3.24: Program Display for the Strain Gauge Reader

Alongside the Thorlabs APT software, new programs were written in 

LabView for the acquisition and formatting of data. These programs used 

information taken from the T-cubes via the ‘voltage out’ ports. As well as 

operating as data acquisition programs, some of these newly written 

programs also had a control element, in that they simultaneously drove an 

oscillation in one of the nano stage axes, while recording data. These 

programs included:
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1. Nanostage2a - Drives one axis (usually y) on the nano stage with a 

sine function. The amplitude, frequency and an offset could be 

selected. The output voltages from each of the two strain gauge 

readers (monitoring the actual position of the stage in each of the x 

and y axis) and the QD could be simultaneously recorded. The QD 

outputs were separated into three separate voltages: x axis, y axis 

and sum (as discussed in section 3.2.3.1.3). Frequency of data 

acquisition was set at 100 kHz.

2. Nanostage2b - This program had no sine function generation. It 

simply tracked the QD outputs for x, y and sum. The frequency of 

data acquisition was set at 100 kHz. This program was written to 

measure the standard deviation of position of a trapped object.

3. Nanostage2c - Essentially the same program as nanostage2a but 

with the frequency of data acquisition at 1 kHz.
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Figure 3.26: Screenshot of the front window of the LabView based 

program tNanostage2c,. The purple sine wave is the generated wave. The 

red sine wave is the real time position of the stage in one axis.

When taking data at 100 kHz, the program would terminate after just over 

0.6 seconds having acquired its maximum amount of data: 65532 data 

points from each output. This was the case for each of the nano stages 2a 

and 2b. However, at a lower frequency of data acquisition, the program 

acquires data sufficiently slowly that the program has time to store it and 

remove it from its short term memory, thus allowing the program to run 

indefinitely. Hence the lower frequency program was used during longer 

experiments or during setups. However, inevitably with lower frequency of 

data acquisition comes greater inaccuracies so whenever practical, the 

ultra-high frequency programs were used. This may seem counter intuitive; 

however, recording data over a longer period is not beneficial if the data is 

acquired at a lower bandwidth, i.e. acquiring position data at greater 

intervals. The shorter data runs, at higher bandwidths, enable the data to be 

acquired with minimum intervals, thus giving a truer data set of the 

object’s movement during the data period.

3.2.3.3 Initial Results and Discussion

As will be seen in the subsequent chapter, the introduction of the piezo 

electric stage and quadrant detector allowed for the acquisition of large 

quantities of data. Until now, the experiments undertaken had been largely 

qualitative in nature; however, with the addition of these devices a more 

quantitative approach was possible for subsequent investigations.
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During the initial work with the quadrant detector, a number of unusual 

results were found, such as object movement being much larger than was 

being seen in the camera or object ‘jumping’ from opposite sides of the 

QD. It became clear than this was because the QD was a highly sensitive 

device which must be thoroughly understood in order to know when 

unusual or unexpected results are genuine or artefacts of the system or 

sample design.

Firstly, considered was the sample setup. If two cover slips are separated 

by a self-adhesive sticker then the cavity of the sample (i.e. the area 

containing the water and microspheres) will have an easily defined 

geometry as shown in Figure 3.27 and later referred to as the ‘spacer’ 

method.

Two cover slips

Water and
Microsphere
solution

Figure 3.27: Sample Preparation Method 1 - Spacer Method: A cross 

section of the two cover slip method of sample preparation. The two cover 

slips are separated by a thin circular black sticker with a 12mm diameter

hole in it.
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Now consider the second method of sample preparation used in this thesis: 

a ‘microscope slide with a cavity’ covered by a cover slip. As with all 

setups, the cover slip must be the surface which meets the microscope 

objective due to the finely tuned working distance of the microscope 

objective. Therefore the far surface, and thus the surface through which the 

laser must pass to reach the QD, would have to be the ‘microscope slide 

with cavity’ as shown in Figure 3.28.

QD
t

Figure 3.28: Sample Preparation Method 2: A cross section of the cover 

slip-microscope slide with cavity method of sample preparation. This 

method allows for a much greater volume of solution. The cavities have a 

diameter of 12mm and a depth of 3mm.

This method of sample preparation shown in Figure 3.28 is useful for a 

variety of tasks but initial results show it cannot be employed where the 

QD is recording data, since the QD is a highly sensitive device which must 

be carefully calibrated (as discussed in Chapter 4). The upper wall of the 

sample chamber is curved and thus has a different gradient relative to the 

laser at each point across it. As the laser is passed through this curved 

surface it is refracted differently than when passed through a flat surface as
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in sample preparation method 1. The stage moves independently to the 

laser position, so depending on the sample position above the microscope 

objective, there could be vastly different angles at which the laser meets 

the top surface. This in turn will affect the position of the laser on the QD.

QD

t

Figure 3.29: How the microscope slide with cavity setup can compromise 

the quality of QD results. Each of the lower arrows represents a different 

position of the laser relative to the sample. This shows how a position 

change could translate in to greatly different QD data.

The next issue with the QD was ensuring a large enough signal reached its 

surface. During initial tests, it was found that the signal reaching the QD 

was below the manual quoted preferable range. This was caused by major 

power loss due to incorrect condenser position. The condenser lens purpose 

is to ‘gather’ the highly divergent light from the high NA objective and 

refocus it. However, if the condenser is positioned too high above the 

objective, then despite its wide diameter, much of the laser power will have 

already diverged beyond the width of the condenser by the time it reaches 

the plane of the condenser. Therefore, the condenser must be positioned 

very close to the sample in order to minimise losses.
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Microscope object

Condenser le

~ Custom Sample 
Holder mounted on 

~ nano stage

Sample

Figure 3.30: Sample Stage. Showing the small distance between the 

sample and the front surface of the condenser lens.

The next major issue found during initial work with the QD, was that the 

output signal of position, can vary greatly depending on the distance 

between the trapped sphere and the near cover slip surface. A trapped 

microsphere operates as a miniature lens and thus focuses the light. It was 

observed that in regions where the trapped sphere was very close to a 

surface(less than 20pm) there was great instability in the QD output. 

However, at distances greater than 20pm a relatively stable output signal 

was observed.

Another issue tackled at this stage of the system progression, was the 

problem of preparing and loading a sample only to find almost all of the 

microspheres within the sample are fixed to the surface. This is due to a 

combination of electrostatic and Van der Waals forces. One method of 

reducing the sphere’s natural desire to affiliate to the cover slip surface was 

by the introduction of a surfactant to the sample i.e. a few drops of Kodak 

photo solution (Photo Flo 200) was used in this work. This dramatically 

reduces the extent to which the spheres will fix to the surface or each other.
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3.2.4 Second Laser Line Integration

Although, the installed 532nm laser offered excellent trapping capability, 

its relatively low power meant it is limited in terms of engineering 

applications. The power available combined with its wavelength, would 

make ablating or fusing glass like materials impossible in the current 

system. With aspirations to fuse spheres to each other or to surfaces, it was 

clear greater powers were required. Furthermore, harnessing two lasers, 

with different properties, both delivered to the sample through the same 

high NA microscope objective would undoubtedly add a great deal to the 

system. As with the SLM, it was reasoned that by having multiple laser 

spots, one laser could trap objects while another performed an engineering 

function to enable permanent fixing of objects. The introduction of the 

second laser line was done with large parts of the work in Chapter 5 being 

considered. The desire to be able to focus both lasers to the same point, or 

along the same axis but to varying relative focal positions, made its 

introduction significantly more difficult but it was decided that if 

successful this could give the system unique capabilities.

3.2.4.1 Hardware

3.2.4.1.1 SPI Laser

The model is a G3 HS 20W Pulsed Fiber Laser (serial number 318621). 

This model allows for both continuous wave and pulsed modes of 

operation. The repetition rate of the laser when in pulsed mode can be
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varied between 25 and 500 kHz when operated at full power. Or, 1-25 kHz 

at a reduced power range. Although commonly referred to as 1064nm in 

wavelength, the specification of the laser is 1062+/-3 nm. The laser’s 

actual wavelength was measured in the test report at 1061.44nm with an 

emission bandwidth of 4.5 nm. The M2 specification of the laser is 1.6-2 

with the test report recording a value of 1.93. The beam diameter was 

measured at 3.2 mm. The maximum energy per pulse was measured as 

0.84mJ.

The laser has a built in fan to assist with its cooling. This can be 

deactivated to minimise vibration on the table but this is inadvisable when 

running the laser at higher powers. The laser was delivered via a 2 metre 

length of optical fibre. The laser was software controlled with a wide 

selection of parameters available: operation mode (CW or pulsed), power 

(0-20W), pulse rate (1-20kHz), waveform (25 pre-set waveforms). The 

pre-set waveforms allowed for a high degree of control over the output 

waveform of the beam when in pulse mode.

3.2.4.1.2 White Light Diode

The original fibre illuminator source employed a fan for cooling purposes. 

However, this fan produced a small 50Hz vibration which was damaging 

much of the data collection undertaken in Chapter 4. Therefore, a new 

illumination source was ascertained to replace the fibre illuminator source. 

The diode fitted into the system in the same position as the fibre 

illuminator had previously occupied. The diode introduced was a Thorlabs 

LIU001 white light diode. As well as removing the oscillation produced by 

the previous light source, the fibre illuminator, the diode source also 

produced significantly less heat than its predecessor. This is preferable 

because temperature changes in the sample will distort many of the
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experiments undertaken throughout this research. For example many of the 

force measurement results taken in Chapter 4 of this thesis are highly 

temperature dependent in a number of ways. Therefore, any aspect of the 

design process that can limit temperature changes in the system is 

encouraged.

Mechanical Shutter 3.2.4.1.3

A second mechanical shutter, again a Thorlabs SC 10 has been installed 

into the system to act on the second laser line.

3.2.4.2 Software

3.2.4.2.1 Joystick Control Additions

The ‘Joystick Control’ program was again added to. The additions to the 

program were:

• The SPI laser enable function - The SPI laser is entirely PC 

controlled. This function communicates directly with the SPI laser 

and thus provides an easy method of enabling, and importantly in 

terms of safety, disabling the laser.

• Mechanical Shutter Control - A second mechanical shutter has 

been installed into the system, for the second laser line. This 

addition to the program allows the program to communicate with
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the new mechanical shutter. As with the previous shutter program, 

for the shutter on the other laser line, this function provides for 

greater usability and safety.

• Z line function - This function was developed during the work 

described in Chapter 5. It provides the capability for the scanning 

of the mechanical micro stage in z, down and up a specifiable 

distance and speed. During efforts to cure through the entire 

thickness of a resin, as explained in Chapter 5, this function 

ensured the ability to provide energy right through the thickness of 

the material.
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Figure 3.31: Screenshot of the front screen of the final version of the 

‘Joystick Axis Control’ program.

3.2.4.3 Initial Results and Discussion

The addition of the 1064 laser line was a complex process. Attempting to 

focus place both lasers along the same axis is not trivial. The setup
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employed for introducing the second laser line is shown in the next figure. 

It shows that the two lasers are both reflected off the last mirror before the 

microscope objective. Therefore, to achieve both lasers running along the 

same axis, it is not only necessary to have them both arrive at the point of 

the mirror, but also they must arrive at the same angle. Furthermore, the 

532nm line’s penultimate mirror is passed through by the 1064 nm line, as 

shown in Figure 3.32. As a result, any alterations to the position or angle 

of this mirror will affect die trajectory of both lasers.

3.3 Final System Setup

This final system design represents a long process of work to reach a setup 

with a variety of capabilities and versatility. The system has been 

specifically designed for the execution of a series of experiments to extend 

the knowledge of optical trapping as an engineering tool.
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Figure 3.32: The Final Optical Trapping System
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1.25 Numerical Aperture lOOx 
Olympus microscope objective

532nm

1064nm

Figure 3.33: The sample setup consisting of the sample itself, which has a 

variety of different set ups, the nano movement stage (NanoMax) mounted 

on a micro movement stage (OWIS).
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Figure 3.34: Final Optical Trapping Setup showing both laser lines

3.4 General Discussion

As optical traps have developed, the technology has expanded to include 

other techniques alongside the trapping function. This has allowed 

researchers to build trapping systems specific to their needs. In the case of 

biological research this has often meant the inclusion of quadrant detectors 

to act as a force measurement tool (97-101). Different imaging techniques, 

such as dark field imaging (102,103), have also been added into existing 

trapping systems.
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The system set out in this chapter was designed, built and developed 

specifically to facilitate engineering applications. The two laser sources 

alongside the SLM capability provide for a highly versatile system which 

can be easily adjusted for a specific task. The idea to have two lasers 

aligned and with the ability to vary the laser focuses relative to each other 

gave the system perhaps its unique capability. Admittedly, adding this 

element in to the system made the alignment of the system immensely 

difficult. At one stage it looked as if it would not be possible to achieve the 

level of alignment required for the focuses to be sufficiently close that they 

would be able to work successfully in tandem. The Keplerian beam 

reducer, mounted within cage work, allowed for adjustment of the beam 

focus. By translating the objective lens along the cage work, the position of 

the 532nm laser focus can be moved in tire z dimension. Moving this lens 

does sabotage the Keplerian beam reducer so the reduction achieved will 

change but in certain applications this not problematic. The ability to 

manipulate the focus of the 532nm laser line was useful dining the work 

undertaken in Chapter 5 of this thesis.

Alongside the hardware development it is worth noting that the software 

development added greatly to the system capabilities. LabView allowed for 

programs to be updated and enhanced easily as the needs and applications 

became more specialised.

Consequently, the final system produced was beyond anything available 

commercially in terms of both abilities and versatility. Furthermore, by 

going through the process of designing, building and developing this 

system, a far greater understanding of optical trapping and the inherent 

complexities of the system, which will affect any subsequent expeiiments, 

was achieved.
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The various investigations undertaken with the system are set out in the 

subsequent three chapters.
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Chapter 4

Calibration and Measurement of Forces 

produced by the Optical Trap

4.1 Introduction

One of the most appealing aspects of optical traps is their ability to 

measure forces accurately at the piconewton level. This has been of 

particular use within various biosciences based research areas - as 

discussed in Chapter 2. However, as with any measurement system, before 

this potential capability could be used by biologists, physicists were 

required to calibrate the system. The different methods of calibration were 

discussed in Chapter 2 and in this chapter; various methods are 

investigated and compared. Once the system was calibrated, a variety of 

fundamental tests were performed to learn more about the trapping process.
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Some of these tests varied parameters that had previously been tested, 

whereas others were previously untested parameters. For tests similar' to 

those previously undertaken, discussion is included as to how these results 

fit into the current understanding, including how the results concur or 

conflict with previously published work. Where new tests are undertaken, 

efforts are made to understand the results and to discuss how these fit into 

current optically trapping theory.

4.2 Calibration Procedure

There are thr ee aspects of the system that required calibration:

1. The Strain Gauge Readers

2. Quadrant Detector - As the position of a trapped sphere is 

measured by the device in Volts, it is necessary to establish the 

conversion of metres (or rather nano metres) to Volts.

3. The trap stiffness of the trap at a specific power.

4.2.1 Calibration of the Strain Gauge Readers

The stage positions were monitored at high bandwidth (500Hz) using strain 

gauge readers. One strain gauge reader was required for each axis to be 

monitored. These readers provided the position data of the stage by 

outputting a voltage. This voltage had a linear relationship with actual 

position of the stage in metres. The strain gauge readers were calibrated by
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the manufacturers (ThorLabs). However, as the output signal (via the SMA 

cables used to communicate with the PC) was only available as a voltage, 

it was necessary to convert this to metres.

Position (Volts)

x position 

y position

Figure 4.1: Shows the position of the stage in both Volts and micrometres 
for a given position for both the x and y axis.

The above figure shows the linear relationship between the voltage output 

from the strain gauge readers and their relative position in Jim. Thus the 

conversion factor was found to be B = 2, according to the relation:

Bpv = pm (Eq.4.1)

Where pv is the position in Volts from the strain gauge reader and pm is the 

position in Jim as measured by the strain gauge reader.
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4.2.2 Calibration of the Quadrant Detector (QD)

This calibration was necessary to convert accurately the position, given as 

a voltage output from the QD, into position data in microns.

A sample of 5.44 pm diameter silica spheres was made up in the ‘spacer’ 

method of sample preparation (see figure 3,27). In this case, by not using 

any soap solution the vast majority of spheres were fixed to the surface due 

to electrostatic forces. A non-fixed sphere was found, trapped and 

oscillated (at a known frequency and amplitude) in close proximity to a 

fixed sphere. The sphere that was fixed to the cover slip surface oscillated 

at the actual frequency and amplitude of the stage, whereas the trapped 

sphere oscillated at the same frequency but at a smaller amplitude due to 

the forces exerted by the trap. A video was taken of this process using the 

Vision software, developed and discussed in Chapter 3. This video was 

then processed using the hacking program, StAT. StAT gives outputs for 

the position in pixels with frame number, for both the trapped and the non- 

trapped spheres. As the non-trapped sphere was fixed to the oscillating 

cover slip, its oscillation in pixels was equivalent to the oscillation of the 

stage which is known. Therefore, a conversion factor for pixels to metres 

could be found. This value could then be used to convert the movement of 

the trapped sphere from pixels to metres. Finally, as the QD produced data 

for the sphere position in Volts, this was equivalent to the sphere’s position 

in metres, hence a conversion factor for Volts to metres could be 

established.
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Figure 4.2: Plot produced from StAT. The centre sphere is optically 

trapped. The sphere to the right is fixed to the surface the, and hence its 

movement is equivalent to that of the stage. The pink and yellow lines 

show the movement of the spheres as tracked by the StAT program.

The stage was driven at a frequency of 2Hz, an amplitude of 0.5V and an 

offset of 2V. From the calibration undertaken in section 4.2.1 and the 

amplitude conversion to microns, the stage was effectively driven at an 

amplitude of Ijim. The offset is to move the centre of the sine wave above 

0V, as the stages cannot be driven with a negative Voltage, so the offset 

must be greater than the amplitude.
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fe 200

Figure 4.3: Showing (in pixels) the position of a sphere (in pixels) which 

is fixed to the cover slip, as produced by the tracking program StAT.

From the above data, the amplitude of the y axis oscillation of the fixed 

sphere was calculated to be 20.2 pixels. The amplitude was calculated 

from:

Af

/V /\
c — y . 

max min

2 (Eq.4.2)

Where Af is the amplitude of the fixed sphere’s oscillation, smax is the mean 

of the maximum values, and Smin is the mean of the minimum values.
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♦ y axis
■ x axis

Figure 4.4: The position of a trapped sphere, as produced by the tracking

program StAT

From the above data, the amplitude of the y axis oscillation of the trapped 

sphere was calculated to be 20.0 pixels using equation 4.2.

♦ y axis

2 ■

Figure 4.5: Showing portion of the data from the z strain gauge reader 

which is equivalent to the y axis of the camera. Taken simultaneously to 

the video used by StAT in the previous two figures. This data is taken at 

high very bandwidth. The above line is made up of 65536 individual data

points.
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Figure 4.5 shows that the stage was successfully driven at the desired 

amplitude of 0.5V or 1 pm. Therefore, a second conversion factor could be 

found from the known movement of the stage, in Volts and the known 

movement of the fixed sphere in pixels using:

Am-fixed= D Ap.fixed (Eq.4.3)

Where Am-fiXed is the amplitude of oscillation in metres of the fixed sphere, 

Ap -fixed is the amplitude of oscillation of the fixed sphere in pixels and D is 

the conversion factor. From the above data:

D = 0.098 pm per pixel

This value was used together with the position data of the trapped sphere, 

taken with the QD. Equation 4,4 was then used to find the amplitude of 

oscillation of the trapped sphere in metres:

Am-trapped — D Ap-mipped (Eq.4.4)

Where Am.trapPed is the amplitude of oscillation of the trapped sphere in 

metres and Ap.trapPed is the amplitude of oscillation of the trapped sphere in 

pixels. Therefore, Am.trapped= 1.97 pm

This value was then compared with the QD position data for the same 

trapped sphere:
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time (seconds)
Figure 4.6: Output signals from the QD for x-diff and y-diff showing the

position of a laser trapped 5.44 pm sphere during a stage oscillation of

2Hz.

The amplitude of this oscillation was found using Eq.4.2: 

Amplitude in Volts, Av = 1.82 V

From the above value, a final conversion factor to convert the position in 

Volts on the QD to a position in pm was derived from:

L Am-trapped — Ay (Eq.4.5)

Where L is the final conversion factor. 

From this, the value of L was found to be: 

0.925 V pm'1
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With the QD conversion complete, measurements of trap stiffness could 

then be obtained. All measurements were subject to experimental errors. 

The use of the CCD camera to track the position (only able to achieve a 

frame rate of 30) was considered to be the main potential source of error. 

However, the frequency of oscillation was selected specifically to 

minimise this error. By selecting a low frequency (2 Hz) with which to 

drive the nano stage, the camera was able to detect a large portion of the 

sine wave based movement of the sphere. Any drift over the course of the 

experiment should therefore have been insignificant, given that it was not 

the absolute position of the sphere that was of interest, rather the 

amplitude. The amplitude value should not be affected by drift. As can be 

seen from Figure 4.6, a good quality amplitude signal was achieved.

A second source of error is the use of the tracking program StAT to obtain 

position information of the trapped and fixed microspheres. The manual 

selection of the template for StAT to use in locating particles is subjective. 

Attempts were made to quantify this error by using StAT to process the 

same video image, of a single loosely trapped sphere, 100 times using 100 

different manually selected templates. A mean position of the sphere was 

found for each data set. The standard deviation of the 100 mean position 

values was found to be less than 2% of the mean value.

This process of calibrating the Volts-micron ration on the QD was 

regularly undertaken for both the x and y axis.

105



Joseph L Croft Engineering Applications of the Optical Trap

4.3 Effect of heating in traps on trap stiffness

4.3.1 Introduction

While undertaking measurements of the characteristics of the optical trap, 

knowledge of the trap temperature was required, since a change in 

temperature could affect results in two ways.

Firstly, the viscosity of the medium (in the case of this work, water) is 

highly dependent on temperature. The viscosity of water is inversely 

proportional to the temperature(34). Consequently, any calculations made 

with data which involves viscosity could only hold true if either:

a) The temperature remained constant throughout the experiment.

Or

b) Any change is temperature could be measured and corrected for.

The second way in which a change in temperature could affect the validity 

of the results is that it could not only change the mechanical properties of 

the medium, but could also affect the Brownian motion of the spheres. The 

degree of Brownian motion of an object is proportional to its temperature. 

Consequently, measuring the laser’s ability to trap a sphere with a set 

power, by measuring the extent to which the Brownian motion of the 

object was damped could be affected if the laser radiation were to heat up 

the sphere and thus caused the Brownian motion of the object to increase.
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4.3.2 Experimental Method

A number of experiments were undertaken to try to detect any heating 

within the sample.

The crudest method was the simple use of an infrared camera, employed 

while a sphere was in die trap. The object was held in the 532nm line 

optical trap at a power of 70mW for over thirty minutes in an attempt to 

detect any temperature changes within the sample.

The second method employed was to track the position of a microsphere 

over an extended period of time at a constant laser power. With the laser 

power constant, the trap stiffness should remain constant, and the standard 

deviation of the position of die microsphere should remain relatively 

constant. However, a temperature increase caused by the laser in the 

localised area of trap would lead to an increase in the standard deviation of 

the sphere position due to an increase in the sphere’s Brownian (or 

thermal) motion.

Each ‘packet’ of position data was acquired using the QD at a frequency of 

100 kHz for 0.6 seconds (65536 data points in x and y position). Packets of 

data were taken eveiy 6 seconds for over 5 minutes. Each packet of data 

produced a standard deviation over that sample period for the object’s 

position in both x and y. These were then plotted against the time at which 

that packet of data was taken.
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4.3.3 Results and Discussion

Firstly, the attempts to detect any localised temperature rise within the 

sample were inconclusive as shown in the subsequent figure.

Figure 4.7: Infrared camera image of the sample within a conventional

photo image.

Many images were taken showing similar results to that shown above. This 

image suggests a relatively uniform temperature distribution across the 

sample. Despite the focussed laser spot being within the water sample for 

more than thirty minutes, the infrared camera was unable to resolve any 

localised heating above that of the rest of the sample. This is perhaps 

expected, given that the focussed spot has an approximate diameter of 

300nm. This value is found from Eq.4.6.

108



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

(Eq.4.6)

Where, Xq is the wavelength of the laser, wo is half the diameter of the 

beam at its narrowest point.

The second method discussed, regarding the monitoring of microsphere 

position to detect a change in the Brownian motion of the spheres, has the 

potential to resolve much smaller areas of temperature increase. This is 

because the temperature of the microsphere would only need to rise by a 

few degrees for a noticeable Brownian motion change to be detected (104). 

The infrared camera method, however, would require a much larger area of 

the sample to increase in temperature for the said temperature rise to be 

detected. Two tests were therefore undertaken, the first with the laser 

power at 20mW and the second with the laser power at 70mW.
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Figure 4.8: The standard deviation of the position of sphere held in a

20m W trap.
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Figure 4.9: The standard deviation of the position of sphere held in a

70mW trap.

110



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

Neither of the graphs in Figure 4.8 and 4.9 show any significant rise in the 

standard deviation in position. In fact, for the 70mW case (Figure 4.9), 

there is an overall decrease in the standard deviation of the sphere over 

time.

It is also noted, in both cases that the x axis appears to have a much smaller 

standard deviation than that in the y axis. If this is accurate it would imply 

greater trap stiffness in the x dimension than the y. This apparent smaller 

standard deviation in x compared with y could possibly be for one of two 

reasons.

Firstly, the standard deviation values shown are in Volts not metres. They 

are the direct outputs from the QD before a calibration converting Volts to 

metres was undertaken. It is possible that the conversion values were 

different for each of the x and y values. The most recent calibration 

procedure produced similar conversion factors in both x and y. However, it 

is possible that, in this particular setup, the conversion factors could have 

changed. So, 1 Volt on the x axis could imply a different number of metres 

to 1 Volt on the y axis. However, this was deemed unlikely as the various 

conversion factors calculated during the project were never greater than 

8% from the mean conversion factor. As the original purpose of the 

experiment was to establish any localised heating in the trap it was not 

deemed necessary to consider the effect of these conversions, since a rise 

in temperature could be viewed just as easily in Volts as in metres.

The second possibility is that the result was accurate, in that the optical trap 

had greater trap stiffness in x than in y. This could be for a number of 

reasons, such as the direction of linear polarisation of the beam, and is 

investigated further in section 4.6 this chapter.
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4.4 Determining Trap Stiffness

Since optical trapping has developed as a measurement tool, trap stiffness 

has increasingly become the quantity of choice to measure. Trapping 

efficiency, Q, as mentioned in Chapter 2 is an alternative parameter 

through which to quantify the performance of an optical trap. However, 

increasingly it is trap stiffness, k, that has become the parameter of choice. 

This is largely due to trap stiffness providing the capability for calibrated 

force measurements (usually of the piconewton range) which is a highly 

desired capability in a number of research fields but especially in the 

biosciences arena. There are commonly three methods of measuring the 

trap stiffness:

4.4.1 Method 1 - Based on Stokes’ Law

4.4,1.1 Experimental Method

A sample was constructed in the ‘spacer’ design (as shown in figure 3.27) 

containing a dilute solution of 2.44pm diameter silica microspheres and 

then loaded into the system. A sphere was then trapped at a specific power 

and, as with the escape force experiment, the stage was translated at a 

known velocity.

While the stage is translated, a force is exerted on the trapped sphere 

causing a displacement from the trap centre, which is characteristic of the 

trap stiffness. Hence, as the stage was translated, the data acquiring 

program ‘nanostage2b’ was run to monitor this displacement. This was
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repeated for a range of stage translation velocities to ascertain a 

displacement characteristic, the gradient of which was representative of 

trap stiffness. This was repeated, translating the stage in both directions in 

both the x and y axis.

4.4.1.2 Results and Discussion

In the following figures (Figures 4.10 - 4.15), the position and velocity 

measured in the range 30-80mW are presented graphically. The x axis on 

each graph shows the velocity with which the stage was translated, while 

the trap position is held constant. Negative velocity represents the 

translation of the stage in a different direction. Note that the positions are 

not normalised, hence why at zero velocity the centre of the trap in not at 

the origin.

• x axis 
■ y axis

— LliifiU (x axis)

0.1 -

-0.1 -
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Figure 4.10: Position and velocity of sphere for a power of 30mW
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Figure 4.11: Position and velocity of sphere for a power of 40mW

0.25

■ y axis
-----Linear (x axis)
— Linear (y axis)

-0 005-0015 0 005 0.015
-0 05 -

-0 3

114



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

Figure 4.12: Position and velocity of sphere for a power of 50mW
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Figure 4.13: Position and velocity of sphere for a power of 60mW
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Figure 4.14: Position and velocity of sphere for a power of 70mW
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Figure 4.15: Position and velocity of sphere for a power of 80mW

The first thing to note is that the gradient for the x and y data are distinctly 

different to each other. As velocity can be converted to a drag force via 

Stokes’ Law it is possible to quantify the trap stiffness. The gradient of 

each trendline in the preceding graphs was quantified and converted into 

trap stiffness in pN nm'1. This data is shown in Figure 4.16.
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Figure 4.16: Trap stiffness at a series of laser powers in each of the x and y

axes.

In spite of the linear relationships apparent in Figure 4.10-4.15, it appears 

their relative gradients were only loosely dependent upon the laser power, 

as seen in Figure 4.16. It appears that the laser produced a ‘tighter’ or 

‘stiffer’ trap in the x dimension than the y. At this point in the research, it 

was suggested that this discrepancy could be caused by the direction of 

linear polarisation of the beam, and this is therefore discussed in more 

detail later in this chapter.
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4.4.2 Method 2 - Based on Equipartition Theory

4.4.2.1 Experimental Method

Three samples containing different size microspheres were made up, using 

the ‘spacer’ method of sample preparation as set out in Chapter 3.

One of these samples was loaded into the system and a sphere optically 

trapped at a set laser power. This time the stages were held stationary 

throughout. The LabView program ‘nanostage2b\ which is discussed in 

Chapter 3, was then employed to track the trapped spheres’ positions in 

time at a frequency of data acquisition of 100 kHz. Each data set contained 

65536 data points for each of:

• Position of sphere in x, in Volts from the QD

• Position of the sphere in y, in Volts for the QD

• The sum value from the QD

• The time at which each of the above occurred.

Each data set was collected in approximately 0.6 seconds. So, multiple data 

sets could be taken in a short space of time. Once multiple sets had been 

taken at a set power, the power was then increased and the process 

repeated. Once multiple data sets had been taken at a series of powers, a 

new sample was loaded containing different sized microspheres and the 

process was repeated.

The position data was then converted from Volts to microns using the 

method set out earlier in this chapter. Then the principle of equipartition
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was used to find values for the trap stiffness. The principle of equipartition 

is a classical statistical mechanics theorem that defines the relationship 

between the temperature of a system and the average energy of all the 

particles within it. It quantifies the thermal energy for each degree of 

freedom (x, y and z), thus the particles in each degree of freedom will 

possess an average energy related to the temperature according to Eq.4.7 

(105).

(Eq.4.7)

Where, k is the trap stiffness, kb is the Boltzmann constant, T is the 

temperature (K) and 8 is the standard deviation in the position data of the 

trapped sphere(106).
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4.4.2.2 Results and Discussion
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Figure 4.17: Position data from QD of a 1.54 pm silica sphere

Through use of the equipartition method, the standard deviation in the 

position of the sphere could be converted to trap stiffness and is plotted 

against laser power in Figure 4.18.

120



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

♦ y udi 
■ xuds

----- LijKir(x ad*)
— Lfa»»«r(y»xfa)

Laser Power (mW’)

Figure 4.18: Trap stiffness calculated through the equipartition method for

a series of laser powers

As with the Stokes’ law method of determining the trap stiffness, the trap 

stiffness appears to be significantly larger in the x dimension than in the y. 

Unlike the Stokes’ law case however, the equipartition produces a result 

showing a clear proportionality between the laser power and the trap 

stiffness which corresponds with similar work reported in the literature 

(32). The results in Figure 4.17 and 4.18 led to an investigation into the 

effects of linear polarisation of the trap stiffness, undertaken in section 4.6 

of this chapter. As mentioned in the previous section, these results implied 

the possibility that the direction of linear polarisation was influencing the 

trap stiffness.
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4.4.3 Power Spectrum Method

4.4.3.1 Introduction

The power spectrum method uses knowledge of thermal motion physics to 

ascertain values for the trap stiffness. Numerous groups have investigated 

this method including various mathematical analyses (107-110). The idea 

behind it is that the frequency information of the microsphere is related to 

the trap stiffness. As the trap stiffness is increased the high frequency 

components of the movement become dominant. Conversely, as the trap 

stiffness is decreased lower frequency movements are more significant.

A one- sided power spectrum of the position data of a trapped sphere 

produces a graph with a characteristic ‘comer frequency’ which can be 

used to calculate the trap stiffness from the expression(27):

/c =
k

2iry (Eq.4.8)

Where, fc is the characteristic comer frequency, k is the trap stiffness and y 

is the drag coefficient:

y = 67UTjr (Eq.4.9)

Where, T| is the viscosity of the medium and r is the radius of the sphere.

122



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

4.4.3.2 Experimental Method

A sample was made using the spacer method of 2.44 pm diameter silica 

spheres (see figure 3.27). A sphere was trapped at a set laser power and 

held in a stationary position. The QD was used to acquire position data for 

the trapped sphere’s damped Brownian motion as it was held in the optical 

hap. This data was then subjected to a ‘Fast Fourier transform* to produce 

a one-sided power spectrum. A Lorentzian fit was then performed on the 

power spectrum to find a value for the corner frequency. A Matlab routine 

employing the Levenberg-Marquardt algorithm (111) was used to fit a 

Lorentzian curve to the data. The algorithm provided a quick method of 

finding the best parameters for the fit, where the ‘best parameters ’ were 

found using a ‘sum of least squares’ method. The algorithm requires an 

initial ‘guess’ from the user for these parameters in order to initiate the 

iterative process. The power spectrum data is displayed with both the x 

and y axes logged in order to visualize the corner frequency, fc. The corner 

frequency is defined in the Matlab routine as the frequency at which the 

power in the power spectrum has reached half its initial value.

At each laser power, multiple data sets were taken, then a power spectrum 

was taken of all data sets for a set laser power and an average value 

determined. The averaged one sided power spectrum was then fitted with 

the Lorentzian curve and the Matlab routine concluded by producing a 

corner frequency value.
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Results and Discussion 4.4.3.3

Many results were taken and comer frequencies established but as can be 

seen from Table 4.1, there were problems with the data.

Laser Power 
(mW) Test numbers Corner frequency, fc

20 2902-2911 59.7
30 2923-2932 170.8
40 2943-2952 57
50 2965-2974 94
60 2985-2995 78.8
70 3007-3016 63
80 3027-3036 91.6
90 3048-3057 67.7

Table.4.1: The comer frequency found from the average of 10 power 

spectrums of data acquired from the position of a trapped 5.44 pm sphere.

Table 4.1 is typical of comer frequency data acquired during this research. 

As can been seen from the Table 4.1 there appears to be no pattern linking 

the comer frequency and the laser power. The fact that the same method of 

data acquisition had been used with the equipartition method, shown is 

previous section to produce reasonable quality results, in terms of 

correlation between laser power and trap stiffness, suggests the issue is not 

with the data acquisition method, but could possibly be the fitting program 

used to establish the comer frequency. The log scales on both axes of these 

graphs mean that a very small movement in the position of the comer 

frequency on the y axis could lead to a vastly different frequency reading 

on the x axis.
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Figure 4.19: One-sided power spectrum of the position data from a 5.44 

mm silica sphere held in a 20mW laser trap.

The red line represents the fitted data. The logarithmic nature of the data 

meant that, if the fit was calculated using all the data, it would be 

dominated by the high quantity of data produced in the high frequency 

region.
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Figure 4.20: Effect of laser power on comer frequency. This graph 

represents the data shown in Table 4.1.
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Figure 4.21: A single-sided averaged power spectrum of the position data 

of data from 70 independent data test with a 1.54|jm sphere trapped in a

trap of 70mW.
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It is noted that increasing the number of independent data sets recorded 

then taking an average of these, increases the quality of the fit. However, 

the taking of 70 independent tests is a time-consuming process in 

comparison with the Stokes’ law or equipartition methods of determining 

the trap stiffness. As can be seen from Figure 4.20, this research found that 

the comer frequency, when calculated from a relatively low number of 

samples, such as 10 as in Table 4.1, did not follow any clear’ trend as the 

laser power was increased. It is reasoned that the mathematical issue of 

defining the comer frequency. As can be seen from Figure 4.19, which 

represents one set of data, for lower quantities of data the corner is far less 

‘pronounced’. Whereas, Figure 4.21 which is an average of 70 power 

spectrums, a far clearer position of the corner can be seen. However, even 

when larger numbers of power spectrums were averaged, there was not a 

significant increase in the quality of the results. As part of a calibration 

process 100 independent power spectrums have been used (27) but not as a 

method of force measurement. The practicalities of doing 100 tests is 

justifiable for a not too regular calibration process, but taking 100 tests per 

measurement is less so. The longer the experimental process, the more 

likely external factors, such as a temperature change within the lab, will 

have an effect.
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4.5 Effect of laser power (0-100mW) and microsphere diameter on 

the optical trap escape force

4.5.1 Introduction

The laser power is perhaps the most fundamental parameter to vary while 

monitoring the state of the optical trap. As discussed previously there are 

various ways of doing this.

Firstly, in this section, it is not the trap stiffness that is investigated but the 

escape force. As explained in chapter two, the optical trap can be thought 

of as a potential well - with the escape force defined by the well depth and 

the trap stiffness closely related to the gradient and width of the well as 

seen in Figure 4.22.

Force
(pN)

Trap \ 
Stiffness

Escape
Force

Distance (nm)

Figure 4.22: A graph to represent the forces of an optical trap. The escape 

force is the ‘depth’ in pN of the trap. The trap stiffness is closely related to 

the gradient of the well but also depends upon the width of the well.
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It has been previously demonstrated (32) that the laser power is 

proportional to the escape force. Here this is tested alongside the effect of 

the size of the microsphere on the escape force.

This experiment was undertaken with the system in its secondary stage of 

development, as discussed in Chapter 3. This was before the integration of 

the QD. Consequently, this crude experiment was conceived as a method 

of evaluating the quality of the optical trap at a variety of powers.

4.5.1.1 Experimental Method

Samples of low concentrations of 0.5, 1.54, 2.44 and 5.44 jim diameter 

silica microspheres were constructed using the ‘cavity microscope slide’ 

method, as set out in Chapter 3. The first sample was then loaded into the 

system and a sphere was optically trapped. The micro stage was translated 

along the x axis at a series of known velocities while the trap position 

remained constant. Translating the whole medium is essentially the same 

as translating the trapped sphere through the medium. The velocity of this 

translation produced a drag force according to Stokes’ law. Starting at a 

very low value, the velocity slowly increased until the drag force was too 

great for the optical trap to overcome and thus removed the microsphere 

from the trap. This velocity was then associated with the laser power used 

to achieve it. The power was then changed and the experiment repeated. 

Once velocity values for a full set of laser powers had been obtained, a new 

sample containing different size microspheres was loaded and the process 

was repeated.
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4.5.1.2 Results and Discussion

The force calculated from the measured escape velocities, using Stokes’ 

Law, and found at each power for each diameter of sphere is presented in

Figure 4.23.
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Figure 4.23: The escape force measured against laser power for 0.5, 1.54, 

2.44 and 5.44 diameter silica spheres

Interestingly, Figures 4.23 suggests that the larger the sphere, the greater 

the drag force required to remove it from the optical trap. This is perhaps 

counter-intuitive in that the larger spheres have considerably more mass, as 

shown in Table 4.2.
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Diameter (pm) Radius (pm) Volume (pm3)

5.44 2.72 84.29

2.44 1.22 7.60

1.54 0.77 1.91

0.5 0.25 0.07
Table 4.2: Showing how a relatively small change in the diameter leads to 

a vast change the relative volume.

As shown in table 4.2, a 5.44jom diameter sphere has approximately 42 

times more mass than a 1.54pm diameter sphere of the same material. Yet 

the heavier sphere achieved greater escape velocities at each laser power. 

Hence, it is clear that the mass of the sphere is not the most significant 

factor in the laser’s ability to manipulate a sphere, A second point of note 

is that it appeal's from Figure 4.23 that the 5.44 pm diameter spheres are 

being trapped through a different mechanism to the 0.5, 1.54 and 2.44 pm 

diameter spheres. From an understanding of the different trapping regimes 

(the ray optics regime and the electric dipole regime), this is an unexpected 

development. The 1.54, 2.44 and 5.44 pm diameter spheres are all larger 

that the laser wavelength and so their trapping would be expected to adhere 

to the ray optics regime, whereas the 0.5 pm diameter sphere is very close 

to the wavelength of the laser and would therefore be expected to operate 

in a combination of the two regimes. However, consider that the larger 

sphere has a much greater surface area and thus receives a greater number 

of photons leading to a greater transfer of momentum. With regard to the
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laser’s ability to impart a force onto a sphere, for these sizes of sphere, the 

effect of receiving a greater number of photons appears to outweigh the 

sphere’s mass as the most significant factor. Figure 4.24 is drawn from the 

same raw data as Figure 4.23, but in this case it is the escape force per 

‘interaction area’ (N irC) that is displayed, where interaction area is the 

surface area of one half of the sphere.

2.5000E+00

2 0000E+00 -
♦ 0.5 microti
♦ 1.54 micron
♦ 2.44 micron
♦ 5.44 micron

1 5000E+00 -

o 5.0000E-01

Power (mW)

Figure 4.24: The drag force per unit of ‘interaction area’ (required to 

remove a sphere from the trap) against laser power for 0.5, 1.54, 2.44 and 

5.44|0.m diameter spheres

The change is considerable from Figure 4.23 and 4.24. It is now clear that 

the 0.5 pm sphere is operating under a separate regime to the other three
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sizes of sphere. In fact, this data suggests very little difference in the laser’s 

ability to impart force into the larger spheres when viewed within the 

context of then relative surface areas. However, the graph does show a 

minor difference in the force per interaction area for the three larger 

diameter spheres. It appeal's that the 1.54 pm sphere achieves the greater 

force per interaction area per unit of power followed by the 2.44 and 5.44 

pm diameter spheres respectively. This minor difference is most probably 

caused by the mass difference shown in table 4.2.

4.6 Effect of the direction on linear polarization on trap stiffness

4.6.1 Introduction

In the system described in Chapter 3, the 532nm laser passes through the 

attenuator setup in a state of linear polarisation. The direction of linear 

polarisation produced by the laser is vertical, but the direction can then be 

varied using the half wave plate alongside the glan laser polariser in the 

attenuator set up, as shown in Figure 4.25. Using this arrangement, it was 

then possible to measure how the trap stiffness in x and y is affected by a 

90° change in the direction of linear polarisation.

4.6.2 Experimental Method

The direction of the beam linear polarisation was set to vertical by a second 

half wave plate installed immediately after the mechanical shutter on the 

532nm laser line, as seen in figure 4.25.
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Fixed glan laser 
polariser Mechanical Shutter

Initial half 
wave plate

I Plate

Secondary 
half wave

Beam
dump

Figure 4.25: Attenuator setup with secondary half wave plate.

This setup allowed the linear polarisation of the light to be rotated by up to 

90°.

A silica sphere was trapped and its position monitored with the QD for a 

series of powers with the beam, in a state of vertical polarisation. Then the 

polarisation was altered to horizontal and the process was repeated. The 

position data of the sphere could then be converted to a trap stiffness value 

using either the equipartition or the power spectrum method. Both are 

presented in the following results section.
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4.5.3 Results and Discussion
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Figure 4.26: Mean standard deviation of sphere position from 5 tests at a 

set laser power and beam polarisation.
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Figure 4.27: Converted from standard deviation data in Figure 4.26, 

through use of the equipartition theory. Trap stiffness data for a series of 

laser powers at set states of linear polarisation.
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Had the direction of linear polarisation been the parameter responsible for 

the trap being stronger in one dimension (the x axis) than the other (the y 

axis), it is reasonable to deduce that a change in linear polarisation from 

vertical to horizontal would thus switch the axes’ performance, i.e. make 

the trap stiffness stronger in y than in x. However, as can be seen from 

Figure 4.26 and 4.27, this is not the case. The offset between the two axes’ 

‘performances’ remains. The direction of linear polarisation can thus be 

ruled out as the cause of the offset in the x and y axes’ trapping ability.

It is also possible that the ellipticity of the beam is responsible for the 

discrepancy in trap stiffness between the x and y axes. Consider Figure 

4.22, representing the potential well of the trap in two dimensions. If the 

beam was slightly elongated in one axis then the three-dimensional 

potential well would be wider in one dimension than the other. Clearly an 

elongation in the beam will elongate the spot diameter. The dimension of 

the beam containing the elongation would most probably be the axis with 

the lower trap stiffness. This is because the equilibrium position, or centre 

of the trap, is elongated in this dimension, and thus the area in which the 

sphere can reside near equilibrium is larger, leading to a greater variance in 

the spheres position in that dimension. The cause of the ellipticity is the 

SLM. As the beam is expanded up onto the SLM, some of the beam is 

‘lost’. The SLM surface is slightly rectangular, so it reflects more photons 

in one axis than the other, when the beam is expanded to the point of 

overfilling it. This overfilling, and thus slightly rectangular beam leaving 

the SLM, is probably the cause of the discrepancy between the trap 

stiffnesses in the x and y axes, not the beam polarisation as previously 

hypothesised.
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4.7 Use of St.Andrews Tracker (StAT) program to find trap stiffness 

values

4.7.1 Introduction

The St.Andrews Tracker is a piece of object tracking software written in 

LabView. The program has the capability of tracking numerous objects of 

different varieties simultaneously from pre-recorded video footage. The 

program offers an alternative method for tracking the position of a 

microsphere as opposed to a QD. As discussed previously, both methods 

have advantages and disadvantages. The tracking software is limited by the 

frame rate of the camera, which is generally much less than is achievable 

with a QD. Whereas a QD has the disadvantage of being limited to 

tracking one object at a time and requires a complex calibration procedure. 

Furthermore, any calibration on the QD is only accurate for the just 

acquired data. Thus, regular' recalibration is required.

4.7.2 Experimental Method

Samples were constructed for each of the three sizes of sphere available, 

(i.e. 1.54, 2.44 and 5.44pm diameters) and each immersed in distilled 

water and 2 drops of the surfactant. The samples were constructed using 

the ‘microscope slide with cavity’ method (see figure 3.28). This method 

of sample construction was preferable to the ‘spacer’ method as it provided 

a much larger volume of sample to allow trapping of the spheres far* from 

any surfaces, which could otherwise have distorting effects on the results. 

The sample containing the 1.54pm diameter spheres was trapped with the 

532nm laser line. The power of the laser was measured with a power meter 

(positioned immediately after the mechanical shutter). A video was then
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captured of the trapped sphere at a frame rate of 30 frames per second. 

Videos were then captured of the trapped sphere for a series of laser 

powers and then the process was repeated for each of the 2.44 and 5.44 pm 

diameter sphere samples.

The videos were then processed using the tracking program StAT. This 

program outputs the x and y position of the trapped sphere in pixels for 

each frame of the video. The pixel positions were converted in microns. 

The equipartition method of trap stiffness calculation was employed to 

convert the variance of the sphere’s position into a value for the trap 

stiffness. A trap temperature of 298K was assumed for this experiment.

4.7.3 Results and Discussion
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Figure 4.28: The Trap Stiffness as a function of laser power for a 1.54 pm 

sphere trapped in the 532nm laser line.
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Figure 4.29: The Trap Stiffness as a function of laser power for a 2.44 pm 

sphere trapped in the 532nm laser line.
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Figure 4.30: The Trap Stiffness as a function of laser power for a 5.44 pm 

sphere trapped in the 532nm laser line.
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Each of the graphs in Figure 4.28 to 4.30 displays an (expected) increase 

in trap stiffness with laser power. Furthermore the trap stiffness values 
produced, of the order of IpN nm'1, compare well with trap stiffness values 

found in other studies (31,32,112,113). However, these results also 

highlight the difficulties in both the use of a low frame rate camera for 

monitoring the trap position, and in the use of the equipartition method as a 

method of trap stiffness calculation. None of the graphs produced the 

expected linear relationship between laser power and trap stiffness. This 

does not compare favourably with the highly linear relationship found in 

the escape force experiment results

The equipartition method, see Eq.4.7, is dependent on both temperature 

and accurate knowledge of the sphere’s variance in position. Accurate 

knowledge of localised temperature is very hard to achieve as discussed 

earlier in this chapter.

4.8 Discussion on the different methods of data acquisition, force 

calibration and force measurement

This chapter, together with the work in the force measurement section of 

chapter two, shows that there are currently a number of different methods 

of quantifying the quality, effectiveness or precise forces exerted, in an 

optical trap. Although some methods have become more popular than 

others it is clear there remains no consensus or universal method.

Each method has its advantages and disadvantages and the method of 

choice may well be determined by what hardware is available in a system. 

The power spectrum method is limited by the need for many independent
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spectra to produce an accurate comer frequency and thus trap stiffness. It is 

also dependent upon the fitting routine, but it has the advantage that it is 

not temperature dependent; or rather, no temperature is assumed in the 

process of calculating the trap stiffness. Whereas, for the equipartition 

method, a temperature value is required in the calculation. The Stokes’ law 

method is the most fundamental and provides a good knowledge of the trap 

stiffness at larger displacements from the trap centre. Both the power 

spectrum method and Stokes’ law method require knowledge of the 

sphere’s radius. Commercially available spheres of the micron scale quote 

confidences in the quoted diameters in the region of +/- 10% which is not 

inconsiderable. The equipartition method however, benefits from being 

independent of the trapped sphere’s size. A downside to the equipartition 

method is its dependence upon variance which is inherently distorting. 

Variances are found from the squares of all the differences from the mean. 

Consequently, all values are positive and thus cumulative. Therefore, any 

noise or drift in the system will only serve to increase the variance and thus 

imply smaller trap stiffness than reality. Consequently, this method can 

often provide an overestimate of variance and hence an underestimate of 

the trap stiffness.

4,9 Measuring viscosity of the medium using a calibrated trap stiffness

One of the engineering, or indeed medical, applications proposed which 

could benefit from accurate knowledge of tire forces involved in an optical 

trap, is an ability accurately to measure the viscosity of a medium. In the 

medical area it could potentially be possible to use such a system to 

measure the viscosity of a blood sample. The idea is that a blood sample 

could contain a small quantity of microspheres of known size and the 

sample could be loaded into a trapping system which has been previously
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characterized and calibrated for knowledge of trap stiffness at a variety of 

powers. Then, one of the inserted microspheres could be trapped with a set 

power, and thus known trap stiffness. Then the stage could be translated at 

various velocities, with the displacement of the sphere being recorded by 

the QD at each velocity. Then, with the sphere displacement (x) and the 

trap stiffness (k) known from Hooke’s law, the drag force on the object 

from the medium (F) could be deduced using:

F - -kx (Eq.4.10)

This force could then be used in Stokes’ law to deduce the viscosity of the 

medium.

(Eq.4.11)

In the above equation, F = the drag force on the sphere (N), rj = viscosity 

of the fluid (kg m'1 s_1), r = radius of the sphere (m), v = velocity of the 

sphere in the medium (m s'1).

4.10 Discussion

The various methods of force calibration and measurement have been 

demonstrated and discussed. The conclusions of this work are largely that 

the QD is a difficult device to harness to good and accurate effect. The 

need continually to re-calibrate the system due to inherent changes in the 

laser beam path to the QD from one experiment to the next makes the use 

of such a device time- consuming. QDs do nevertheless hold two distinct 

advantages over alternative methods, such as high frame rate cameras; 

these are the bandwidth and accuracy with which data can be ascertained.

142



Joseph L Croft Chapter 4 - Calibration 
and Measurement of Forces

In comparison the use of high speed cameras for the acquisition of position 

data has advantages of its own. Although not yet able to match QDs for 

bandwidth, they are far easier to calibrate and have the ability to track 

multiple particles simultaneously.

Currently, these two competing data acquisition methods are perhaps 

considered equal in terms of their advantages and disadvantages. However, 

with the constant development in high frame rate camera technology 

together with the ever improving hacking programs (such as StAT), it 

seems clear that that eventually the high speed camera and tracking 

software method of data acquisition will become the method of choice 

throughout the optical trapping world.

The escape force experiment undertaken in this chapter produced data that 

compared well with optical happing theory to a high degree. It showed the 

linear relationship between the laser power and the potential well depth. It 

also showed the ‘switch’ in optical trapping regime as the 1.54, 2.44 and 

5.44 pm diameter spheres’ trendlines had vastly different gradients to the 

0.5 pm diameter sphere’s trendline. Access to a greater range of sphere 

diameters in the region around the wavelength could provide the ability to 

further investigate the cross-over between the tradition ray optics regime 

and the Rayleigh regime.

The investigation into the effect of the direction of linear polarisation 

suggested the trap stiffness is independent of the polarisation. Ellipticity in 

the beam appears to be the cause of discrepancies in the x and y axes’ trap 

stiffness.

Accurate knowledge of the forces exerted in optical haps has been the 

driving force behind much of the biosciences-based optical trapping 

research. Engineering new and more accurate methods to achieve force
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measurement results continues to be a large part of the optical trapping 

research field.

The work in this chapter enabled a greater understanding of the 

fundamental optical trapping forces and this knowledge became useful in 

the work carried out in the subsequent chapters.

144



Joseph L Croft Chapter 5 - Embedding 
Silica Spheres

Chapter 5

Fixing Silica Spheres to a Thermosetting 

Polymer using the Optical Trap

5.1 Introduction

The purpose of this experimental series was to establish to what extent 

microspheres can be fixed to a given surface and how well affiliated the 

microspheres would become to the surface.

Initially, it had been considered that the silica (SiC>2) microspheres could be 

directly fused to the glass cover slip. However, after some brief tests and 

basic mathematical analysis of the magnitude of powers required to fuse 

glass to glass, it quickly became apparent that this would not be possible. 

For example, the melting point of fused silica is approximately 1988 K and 

its specific heat capacity is approximately 700 J K'1 kg"1. Hence, the 

amount of energy required to cause a single 5pm diameter fused silica 

microsphere to melt would be approximately 0.2pJ (based on silica density 

of 2.65 g cm'3). Although this value does not appear* high, the difficulty
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arises in that silica is highly transmissive, so the vast majority of the 

photons would give the undesired effect of passing through the 

microsphere without being absorbed by the material. Furthermore, the 

microsphere’s very high surface area to volume ratio means that any heat 

generated would dissipate at a fast rate, meaning that all the required 

energy would need to be deposited in a short time interval of melting to 

occur. Moreover, even if it were possible to achieve these levels of energy 

absorption by the silica sphere, this was not necessarily preferable. Given 

that the aim was to fuse or fix the sphere to a surface, it was worth 

considering that achieving a melt in the silica might well destroy their 

current sphericality and thus undermine the potential application of near 

field processing through the fixed microsphere. Consequently, it was clear 

that for this process to work it must be the surface material that is changed 

to accommodate a positioned sphere rather than the other way around. 

This reasoning led towards the use of a polymer layer in to which the 

microspheres could be embedded. Thus, having decided upon the use of a 

polymer, it was necessary to establish what properties would be essential 

for the polymer for this process to be possible. This ability to fuse 

microspheres to one another is discussed further in section 6.4.of this 

thesis.

The experimental work in this chapter is broken down into three sections:

1. Surface Roughness of spin coated of polymer

2. Curing localised area of polymer in the optical trapping system

3. Curing of localised polymer area while optically trapping a silica 

microsphere.
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5.2 Principle of Experiment

The basic principle of this experiment was to coat a glass cover slip in a 

thin resin coating and then use this cover slip as one side of a sample 

container, which contained a sample of microspheres in water solution. A 

microsphere was then trapped, using either the 532nm or 1064nm laser 

line, and then brought down to the polymer surface. Next, with the sphere 

optically trapped and held as close to the resin surface as possible, the laser 

power was increased, in order to cure the resin and ‘set’ the resin around 

the microsphere. If successful, when the trapping laser shutter was closed, 

the sphere would remain in place. If it had not been fixed in place, then 

once the trapping laser shutter was closed the sphere would resume its 

Brownian motion and slowly move away from the trapping site. Once a 

sphere had been fixed, the sample could be removed from the system and 

then subjected to a chemical solvent which dissolved any uncured resin, 

leaving only the cured areas with embedded microspheres.

5.3 Selection of Material in which to Embed the Spheres

First it was necessary to establish what properties the material must possess 

as incorrect selection would make the task of embedding the microspheres 

significantly more difficult or impossible.

Polymers can be split into two main categories; thermosetting or 

thermoplastic. Thermoplastic polymers tirni to melt if heated above the 

given threshold (generally anywhere between 65 °C and 200°C depending 

on the specific polymer) and will set as they cool. However, reheating the
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polymer will cause the weak (commonly Van der Waals or hydrogen) 

bonds to break as it turns back into a plastic state. On the other hand, 

thermosetting polymers cannot be caused to return to their molten state 

once cured. This is due to the strong cross-links formed during the primary 

curing. As a result, they lend themselves to applications which operate at 

high temperatures as the polymer will remain strong once cured.

With regard to this specific application, a thermosetting polymer is clearly 

preferable. A thermosetting polymer will only require localised initiation of 

the cross-linking process. Additionally, any successfully embedded spheres 

are likely to remain in the chosen location even if the cured polymer is 

again subjected to high temperatures.

The chosen polymer must also have the necessary significant optical and 

transmissive properties:

• The polymer needs to have a surface roughness not significantly 

higher than that of glass so as not to diminish the image quality or 

modify the wavefront of the laser.

• It must also possess a refractive index not too dissimilar from the 

glass. This is because the microscope objective is designed for a for 

an oil-glass-water setup. Adding the polymer layer will affect this. 

However, if the difference between the polymer and glass 

refractive indexes can be minimised, any effect will be reduced, 

and the high NA of the objective should be maintained.

• The transmission coefficient of a potential polymer choice must sit 

within a desired range. The polymer must transmit a sufficiently 

large proportion of the beam to ensure that enough photons pass 

through so that the trapping phenomenon still occurs. However, it
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must also absorb enough of the beam so that sufficient heating (or 

an alternative mechanism) occurs for the curing to occur' in 

localised area of the polymer.

After consideration of the above stated criteria, a thermosetting epoxy 

resin, made available by GEM Ltd, was chosen and it is the resin/polymer 

referred to throughout this chapter. This resin is the epoxy resin used in 

GEM’s D58 ink. Its chemical composition is protected IP and is not the 

focus of this investigation. Although, advised that this polymer had good 

optical properties, these were not defined, so preliminary experiments were 

required to confirm it possessed the necessary optical properties.

5.4 Preliminary Experiments

5.4.1 Surface Roughness of Spin Coated Polymer

5.4.1.1 Experimental Setup and Procedure

The highly viscous nature of the polymer meant that it could not be placed 

on the surface of the cover slip through the conventional use of a pipette. 

The tip of the pipette was used to transfer a globule of resin on to the centre 

of a 0.17 pm thick glass cover slip. The cover slip was then placed in a 

spin coater (Laurell, Model No. Ws-650S-6NPP/LITE/UD).

The sample was then spun at specific parameters for RPM, acceleration 

and time. The sample was then removed from the system and placed on a 

white light interferometer (WYKO) which was used to evaluate the quality 

of the polymer layer, in terms or surface roughness and thickness,
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produced by the spin coating. This was then repeated for a new set of 

parameters.

The RPM values ranged from 50 to 700 and the length of each spin coat 

lasted from 10 to 60 seconds. For each set of parameters, 3 samples were 

generated and then 3 values of surface roughness were generated for each 

sample. So for any giving combination of RPM and time, 9 surface 

roughness values were acquired. The surface roughness measure used, Ra, 

is the arithmetic mean of absolute values.

The layer thickness was established using both the white light 

interferometer and digital callipers.

5.4.1.2 Results and Discussion

The initial values for Ra, achieved before spin coater parameter 

optimisation, were of the order of 200-300nm. Initially, the RPM of the 

spin coater was varied with the results shown in Figure 5.1.
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Figure 5.1: The mean surface Roughness, Ra, calculated from 9 areas from 

3 separate samples at varying spin coating RPM over a 60 second period. 

The errors bars represent 1 standard deviation for each set of 9 values.

Having found a preferred RPM between 400 and 600 RPM, the time of 

each spin coating was varied as shown in Figure 5.2.
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300 n

Figure 5.2: The mean surface Roughness Ra calculated from 9 areas from 

3 separate samples at 400, 500 and 600 RPM over varying spin periods.

The errors bars represent 1 standard deviation for each set of 9 values.

The best repeatable surface roughness value, Ra, was approximately 40- 

50nm, compared to a high quality plain glass cover slip having a surface 

roughness, Ra = 4nm. Although this seems a large discrepancy between the 

two, it could be observed by manually looking through the resin coated 

cover slip, this coating was near optical quality. Not being able to use a 

pipette meant that replicating the quantity of resin deposited on to the cover 

slip was difficult. Repetition was limited due to the imprecise process of 

placing the initial globule of resin onto the cover slip. Accordingly, the 

quantity of resin placed on the cover slip before spin coating, varied 

significantly each time. This limited the ability to achieve precise 

repeatable surface roughnesses.

The best results for surface roughness were achieved with the spin coater 

settings as follows:
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Speed - 500 RPM, time = 30 seconds.

However, the 500 RPM results were only marginally better that the 400 

and 600 RMP equivalent results. The time was more critical. With spins of 

less than 20 seconds not being long enough for the viscous polymer to 

spread out and form a smooth layer. Moreover, the quality of the surface 

appeared to deteriorate slightly for spins longer than 30 seconds. However, 

this decrease in quality with time is not statistically significant, but it is 

clear than there is certainly no improvement in surface roughness beyond 

the initial 30 seconds spin.

Under such settings the resin would spread to form a surface coating on the 

cover slip with a thickness of approximately 30-60|lm, as measured with 

the WYKO white light interferometer and digital calipers. This thickness is 

of the order of 6-25 times larger than the sphere (depending on 2.44 pm or 

5.44pm and 30-60 pm thickness).

Minimising this thickness was an important part of the task. Given that 

ultimately, the aspiration was to have a microsphere embedded on the 

surface of this material and then have the surrounding material washed 

away, it was integral the resin thickness was not too great, otherwise 

washing away the surrounding area would leave an unstable high aspect 

ratio resin ‘pillar’’ as seen in Figure 5,3.
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(b)

(d)

Figure 5.3: Representations of embedded silica spheres on resin surface. 

Diagram (a) shows a silica sphere embedded at the top of a thick layer of 

resin. Diagram (b) shows the high aspect ratio pillar produced once the 

surrounding area has been washed away using solvents. This ‘pillar’ would 

be far from stable and its optical quality in terms of light passing through 

the resin would be severely compromised. Therefore, it is necessary to 

reduce the resin layer thickness as much as possible, as seen in above in (c) 

so that once the surrounding uncured area has been washed away the 

remaining cured resin has a small aspect ratio and thus stable dimensions

as shown in (d).

Furthermore, if the thickness of the layer is too great, the focus of the 

trapping laser will occur within the resin. If the laser does not focus beyond 

the resin and within the water-microsphere solution, optical trapping of the 

microspheres will not be possible.
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5.4.2 Curing Localised areas of polymer in the optical trapping system 

5.4.2.1 Experimental Setup and Procedure

Using the spin coater settings established in the previous section, a spin 

coated polymer layer on a 0.17mm cover slip was produced. The cover slip 

was then used to make up the bottom side (nearest the microscope 

objective) of the sample in the sample preparation method 2 (see figure 

3.28) which uses a glass slide with a shallow bowl shaped cavity, with the 

microspheres and water sample contained within the cavity.

The final optical trap setup as explained in Chapter 3 (see Figures 3.32 and 

3.33) and the sample setup is as shown in Figure 5.4 are used throughout 

this chapter.

Microscope
0.17mm slide with cavity
Cover slip

Figure 5.4: The sample configuration, showing the polymer coating on the 

glass cover slip nearest the microscope objective. Although not shown, 

there is also the 1064 laser line focussing beyond that of the green.

Once in the system, the polymer was subjected to both the green and infra­

red laser line in an attempt to cure localised ‘pillars’ of polymer. After a
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period of irradiation, the sample was then removed from the system and 

placed in a beaker of solvent which washed away any uncured areas, 

leaving only cured areas. These were then viewed under a microscope.

5.4.2.1 Results and Discussion

During a preliminary experiment the resin was cured in an oven. 

Temperatures of 80-100°C for 20 minutes were required for a ‘full cure’. 

With a ‘full cure’ the resin became very hard and had a strong affiliation 

with the glass substrate. Ideally, this level of cure is what is required 

without the use of the oven which is attempted throughout this section.

Initially difficulties arose in attaining curing of any kind on the trapping 

system. This was seen when, following the attempted curing process and 

placing the cover glass in the beaker of solvent, no areas of polymer were 

found.

There were a number of possible reasons for this. Firstly, that the lasers are 

not providing sufficient area to an area to initiate the curing process. This 

was ruled out as samples were subject to high powers from both laser lines. 

For example, 250mW of the 532nm and 300mW of the 1064nm. The resin 

coated cover slip subject to these conditions again showed no cured areas 

when removed from the beaker of solvent. However, some loose particles 

were seen within the solvent suggesting that curing may be occurring but 

that the cured layer is not fully affiliating to the glass cover slip. It was 

reasoned that this was due to the intrinsic nature of a high numerical 

aperture microscope objective having a very small depth of focus. The 

thickness of the resin was approximately 50|tm. In order for the cured
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areas to have a strong affiliation to the glass (as with the oven curing) it is 

important to ensure that the resin is cured through the full thickness 

especially at the glass end of the resin (as opposed to the top surface with 

the water interface). A program was written in LabView to ensure the full 

thickness of the polymer at a particular point is cured. The program 

achieves this by oscillating the stage in the z axis (i.e. along the axis of the 

laser beam). Figure 5.5, shows a series of localised areas which have been 

cured using both lasers alongside the oscillating stage but without a sphere 

embedded. In these preliminary experiments, with abundant laser energy, 

both in terms of power and irradiation time, much larger cured areas may 

have been produced than is required. However, this was necessary to 

establish the capability of curing the resin while it is loaded in the trapping 

system.

O O

100 nm

Figure 5.5: A line of cured areas of the polymer on the glass substrate after 

the uncured areas have been dissolved.

It is worth noting that the cured area only remained on the glass cover slip, 

once uncured areas had been dissolved, if:
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• It was a full cure in the volume in contact with the glass cover slip, 

thus forming a strong bond between the two materials, just as the 

cured resin and glass did in the oven cured sample.

• The produced resin ‘pillar’ was sufficiently stable, strong and 

securely affiliated to the glass surface that it could withstand the 

relatively large forces of the uncured material and solvent washing 

passed it.

The cured areas in Figure 5.5 were achieved with the 532 laser at lOOmW 

and the 1064nm laser pulsed at 10kHz and 300mW. Each area was subject 

to 16 oscillations of amplitude 60pm with the stage moving at a speed of 

2pm s'1.

5.5 Curing of localised polymer areas while optically trapping a silica 

microsphere

5.5.1 Experimental Setup and Procedure

The sample preparation is as above but with attention now on the 

microspheres. The microspheres (5.44 pm diameter silica spheres - 

Banglabs, confidence values ~ 10-15%) were held in the 532nm laser trap 

at high power (200-300mW).

The 532nm laser was used as the trapping laser and the 1064 laser was 

used as the curing laser.

The 1064nm laser naturally reaches focus beyond that of the 532nm beam. 

However, the adjustable nature of the system allows for tuning of the green
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line’s focus position. This allowed the two laser line focuses to be brought 

close together. As both lasers are capable of trapping, it was easy to check 

their relative focus positions by switching one off and seeing the position at 

which the other traps. This allowed for the slow adjusting of the system, 

bringing the two focuses closes together.

Next, the position of the surface of the resin was found within the sample. 

The easiest way to achieve this was to trap a silica sphere and then move 

the microsphere down (or in practice, the entire stage up while the laser 

focus remains constant) to the resin surface. Once the focus of the laser 

was no longer within the solution but within the resin, the hap failed and 

the sphere was lost. Repeating this procedure several times, each time 

noting down the z position of the stage at which the sphere was lost from 

the trap, provided a quick technique for establishing the approximate 

position of the resin surface. For each new sample this process had to be 

repeated due to the varying thickness of the resin and general drift in the 

system.

Once an approximate position for the resin surface had been established, 

the process of fixing the sphere to the resin could begin. Using the green, 

532nm laser line, a silica sphere was trapped and brought down slowly to 

the approximate resin surface position. At times, the sphere would be lost if 

the resin is slightly thicker at that point than the previously found 

approximate thickness - in which case the process was repeated. Once a 

sphere had been successfully trapped and brought down to the approximate 

resin surface position; the 1064nm laser was introduced in to the process.

The 1064nm laser was operated at a pulse rate of 1-25 kHz, and a power of 

20- 200mW.
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Once the localised area around the trapped microsphere had been subjected 

to both lasers for a specific time (t), both shutters were closed and the 

video image was viewed to establish if the microsphere had become fixed 

to the resin surface. If successful, the sphere would remain fixed, if 

unsuccessful, the sphere would be seen to continue its thermal motion.

If successful, the 1064nm laser shutter was opened and the z translation 

function part of the ‘Joystick Control’ program, discussed in Chapter 3, 

and in the previous section was harnessed to ensure curing right through 

the resin thickness at the point below the sphere. The distance of 

translation was set at just over the approximate resin thickness, SOjum. 

Then the stage was translated at a slow velocity, 2-5 pm s'1 down through 

the resin and then back up at the same velocity.

Once a series of the translations in z had been performed the sample was 

removed from the system, the polymer covered slide was separated from 

the rest if the sample and placed in a beaker of solvent for 10 minutes. The 

slide then viewed under an optical microscope separate from the trapping 

system.

5.5.2 Results and Discussion

The solvent dissolved uncured areas leaving only small areas of cured 

polymer (as seen in Figure 5.5). When a sphere had been successfully 

deposited then it could be seen through conventional microscopy 

techniques.
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Experiments were aimed at attaining an embedded sphere, rather than 

achieving it efficiently, so the area was filled with laser power in both the 

green and the infrared wavelengths to ensure that there was sufficient 

power to achieve a full cure while holding the sphere against, or close to, 

the resin surface.

Figure 5.6: Microscope camera image of three areas of polymer. Each of 

these three areas has a central dot within it which is the affiliated silica

microsphere.
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Figure 5.7: A higher magnification of such an area shows clearly a 5.44|im 

silica sphere affiliated to a small area of polymer.

ngth = 5.41 pm
Length = 64.41 pm

50 (Jm

Figure 5.8: Microscope camera image of two 5.44pm silica spheres both 

affiliated to a small area of polymer.
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5.5.3 Disappearing Spheres Phenomena

During the attempted placement of a 2.44pm diameter sphere an 

interesting phenomenon occurs. While holding the sphere in place close to 

the surface, the image of the sphere begins to lose clarity until eventually, 

after 60-90 seconds the sphere has completed ‘disappeared.’

Figure 5.9: Trapped sphere after 0 seconds.
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Figures 5.9,5.10 and 5.11 show the ‘disappearing’ process. Figure 5.9 was 

taken at 0 seconds with the sphere at the centre of the image trapped tightly 

and having been just brought down to the resin surface. Figure 5.10 was 

taken after 40 seconds and Figure 5.11 was taken after 80 seconds. In 

Figure 5.11 the sphere is no longer visible. It appears that the sphere has 

migrated into the resin. This phenomenon occurred repeatedly with the 

2.44|im silica microspheres.

Perhaps the similarity of the resin’s and the sphere’s refractive index are 

responsible for this loss of image. This phenomenon has repeatedly 

occurred in attempts to fix spheres to the resin. It is also worth noting that 

on the occasions where the disappearing sphere phenomenon occurred, if 

the subsequent stages of the experiment were conducted as if the sphere 

had become fixed, and then the sample was removed from the system, 

subjected to solvent and then viewed by a standard optical microscope, no 

affiliated spheres were found. The various parameters used and the 

outcomes reached at each one are set out in Table 5.1 and Table 5.2.
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20kHz z translation 2 reps Outcome
532nm Laser Power 1064nm Laser Power Experiment No.

(mW) (mW) 1 2 3
100 100 a a a
100 150 a a a
100 200 a a a
100 250 a a a
100 300 a a a
150 100 a a a
150 150 a a a
150 200 a a a
150 250 a a a
150 300 a a a
200 100 a a a
200 150 a b a
200 200 a a a
200 250 a a b
200 300 a a b
250 100 a a a
250 150 b a a
250 200 a a a
250 250 b a c
250 300 a b c

Table 5.1: Initial investigation to find parameters at which a 2.44pm 

sphere will fix to a resin surface. Outcomes: (a) Indicated no response, i.e. 

the sphere’s Brownian motion recommenced once the laser shutters were 

closed, (b) The ‘disappearing sphere effect’ was witnessed, (c) The 

sphere’s Brownian motion did not recommence once the lasers were shut 

off, indicating a level of affiliation between the microsphere and the resin 

surface, (d) A sphere was found on a cured pillar1 after being subjected to 

the solvent and inspected on a separated optical microscope.

As can be seen from Tables 5.1, under these parameters, although some 

spheres appeared to affiliate to the resin surface while on the trapping 

system, no spheres were found once the samples had been subjected to the

165



Joseph L Croft Engineering Applications of the Optical Trap

solvent and inspected with a separate optical microscope. Table 5.1 also 

shows that the spheres only remain fixed when the lasers are operated at 

the higher powers. It is also worth noting that at all powers sometimes no 

response occurs. At lower powers, when this happens more frequently, this 

is because the curing process is not initiating. At higher powers, the sphere 

drifting away on some occasions, after the attempted fixing process, is due 

to the varying thickness in the resin surface. So there may be enough laser 

power to cure the resin, but if the sphere is being trapped at a position with 

a gap to the resin’s surface, then it obviously will not affiliate.

Attention was now turned to ensuring the curing of the resin right through 

the layer, to ensure a stable enough pillar, to withstand the forces caused by 

being placing in the beaker of solvent. As such the high laser powers used 

at the bottom of Table 5.1, 532nm - 250mW and 1064nm = 300mW, were 

now used alongside greater numbers of z translation reps and at slower z 

translation speeds for a 2.44 (im silica sphere.

532nm Power= 250mW 1064nm Power =
BOOmW

z translation speed (mm s'1) No. of z translation
reps

Pillar
Observed

Sphere
affiliated

0.002 2 N n/a
0.004 2 N n/a
0.006 2 N n/a
0.008 2 Y Y
0.01 2 N n/a
0.002 8 Y N
0.004 8 N n/a
0.006 8 N n/a
0.008 8 N n/a
0.01 8 N n/a
0.002 16 Y N
0.004 16 Y Y
0.006 16 Y Y
0.008 16 Y Y
0.01 16 N n/a
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0.002 32 Y N
0.004 32 Y N
0.006 32 Y N
0.008 32 Y N
0.01 32 Y N

Table 5.2: Secondary investigation to establish the parameters required to 

cure a stable resin ‘pillar’.

Tables 5.1 and 5.2 show the process is more complex than simply 

immersing the desired area in maximum power. Table 5.2 shows that the 

successfully generated resin pillars were generally at higher z translations, 

i.e. 16 or 32, although some pillars were achieved at lower numbers of z 

translations. The parameters at which the spheres were observed to have 

affiliated to the resin were not very consistent. Perhaps surprisingly, it 

appeal's that although using a higher number of translations does result in 

stable resin pillars it does not result in the successful conversion to 

affiliated microspheres.

The procedure of fixing spheres to a resin surface has been demonstrated 

but is still a developing process. Further repeats of the above experiment 

are required to establish a greater understanding of the factors involved in 

generating the pillars and more crucially, affiliating the microspheres.

5.6 Discussion

The ability to fix microspheres in a close to optical quality resin has been 

demonstrated. Unlike other work, this study achieved such microsphere 

placement without any chemical coating of the microspheres. Clearly a
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chemical coating has been used on the cover slip surface instead on the 

sphere but this is a significant difference to coating the spheres. As the 

eventual aim for such an aim could be to produce a device which harnesses 

these micron-scale silica spheres as micro lenses (see Figure 5.12 below) it 

is critical their optical properties are not diminished. Coating the spheres in 

a chemical coating could decrease their highly transmissive nature and/or 

cause them to lose their sphericality.

The efficiency of the process needs to be improved significantly. If a 

minimum amount of energy is put into the system in the sphere fixing 

process then the width of the polymer ‘pillars’ may be greatly reduced 

allowing for spheres to be placed closer together. This could possibly be 

achieved through a resin/laser wavelength combination that produced more 

efficient cross linking of the polymer. However, such a reduction in the 

pillar diameter increases the aspect ratio of the pillars and reduces their 

stability. Therefore, before efforts to reduce the pillar diameter can be 

attempted, efforts to achieve a thinner layer of polymer must be achieved. 

The resin used in this work, was selected due to its s strong optical 

properties and availability which has allowed the proof of this in principle. 

However, if this work were to be further developed, a more thorough 

investigation of other available thermosetting polymers which still possess 

excellent optical properties but are less viscous and can thus be used with a 

pipette and can be spin coated into thinner layers would be essential in 

improving the process.

Once these spheres can be fixed in a more controlled manner, then perhaps 

a reusable device with the spheres fixed in a specific array (such as a 5x5 

grid) could be manufactured for near field processing. The phenomenon of 

the ‘disappearing sphere’ also needs further investigation. This could 

possibly be achieved through the use of alternative techniques such as
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SEM which may allow for the confirmation that the sphere has migrated 

into the resin. However, the lack of a reasonable alternative explanations, 

suggest this is likely to be the explanation.

Unfocussed 
beam

Glass slide

Embedded 
microspheres

Near-field generated ‘hot-spots’

^ Resin 
coating

Substrate

Figure 5.12: An example of what a reusable device for near field 

processing would consist of

This ability to place spheres is crucial. Until now near-field processing of 

large areas has been restricted to random arrays of spheres (55,56) or self­

assembling arrays of spheres (57,58). This development could lead to the 

manufacturing of a reusable device for near-field processing, as an 

example of the layout of such a device is shown in Figure 5.12. 

Subsequent studies would look to evaluate the reusability of such a device. 

The complexity in developing such as device means that without 

reusability this is never going to be a viable tool. So efforts to focus on 

developing the reusability of the device are critical. The reusability is going 

to be dependent upon:

• Minimising the thickness of the resin layer to increase the stability 

of the pillars.
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• Maximising the bond between the resin pillars and the glass cover 

slip.

Methods of evaluating the proportion of microsphere embedded, possibly 

through use of AFM or SEM, would be beneficial. Especially, if given 

such methods, the relation between the trap stiffness/force down into the 

resin and the proportion of microspheres embedded in the resin could be 

investigated and quantified.
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Chapter 6

Other Engineering Applications of the

Optical Trap

6.1 Introduction

The purpose of the research presented in this thesis was to find and develop 

new engineering based applications for optical traps. Over the course of 

this research many different potentially useful applications were attempted, 

the most successful being presented in chapters four and five. In this 

chapter, a number of other investigations and experiments are presented, 

that although of great interest have either shown promising outcomes that 

cannot yet be fully exploited or less clear outcomes that may have 

potential. Also presented are applications where the problems encountered 

tend to indicate that the process is unviable for the system used here.
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6.2 Ability to Trap Coloured Spheres (Black, Blue, Red, Pink, Yellow)

6.2.1 Introduction

As the previous chapter shows, the embedding of microspheres in a surface 

is possible, but not without its difficulties. The similarities in refractive 

index between the colourless silica spheres and the glass-like resin made it 

easy to ‘lose’ a microsphere into the resin. Therefore, the use of coloured 

spheres was attempted to determine if the beads were entering the resin or 

being lost by another mechanism.

However, one complications with this experiment was that the silica 

spheres were not available in any form other that colourless and therefore a 

different type of bead had to be used instead and these were polystyrene. 

To test if the change from silica to polystyrene beads had any affect the 

behaviour of the colourless beads of both types were compared and they 

were found to behave in a similar manner.

6.2.2 Experimental Method

The system setup used was the final system detailed in Chapter 3. The 

sample setup involved each colour (black, blue, red, pink and yellow) 

sphere solution (polystyrene, l|im diameter in distilled water) being further 

diluted with distilled water (only one colour of sphere in any one sample). 

One drop of Kodak photo solution was added as a surfactant to minimise 

clumping of spheres. Without the surfactant, the spheres tend to affiliate
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strongly to each other and the glass surfaces. The sample was placed in the 

cavity microscope slide-cover slip setup, see Figure 6.1.

Coloured spheres

Microscope slide with 
cavityCover slip

Figure 6.1: Sample setup employing the Cavity Microscope Slide-

Cover Slip Setup

The sample was then addressed by the 532nm laser at low power. The dye 

within the polystyrene spheres makes them much less transmissive than 

clear polystyrene and thus leads to some momentum transfer by the 

photons.

The laser was almost fully attenuated, thus allowing a power of less than 

ImW through to the sample. The laser was then used to attempt to trap a 

coloured sphere. If, as was frequent for close to zero powers, there was no 

response by the microsphere, for example the sphere was neither trapped 

nor pushed away from the trapping plane, the laser power was increased 

slightly. At this point, the sphere would either trap or be ‘fired’ from the 

trap. If the sphere was removed then the power was noted. If the sphere 

was not ejected from the trap, the laser power was slowly increased until 

the sphere was forced out of the trap and the laser power recorded.
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6,2.3 Results and Discussion

Sphere
Colour

Power at which 
spheres are fired from 
trap (mW)

Black <1

Red <1

Blue <1

Pink 10-20

Yellow 20-30
Table 6.1 - Sphere Colour and Laser Power

As can be seen in Table 6.1, the darker coloured spheres (black, red and 

blue) were barely ‘trappable’ at all. At even the lowest of powers, the 

forces produced by photon absorption and reflection outweighed the 

scattering forces produced by the small proportion of photons being 

transmitted through the microsphere.

The lighter colours (pink and yellow) appeared to transmit sufficient 

energy at low powers that the scattering forces generated by refracted 

photons prevail over the pushing forces produced by the reflected and 

absorbed photons. To put this into context, the clear spheres, both silica 

and polystyrene have no upper limit for power at which they can be 

trapped. As seen the chapter 4, for clear spheres, the greater the laser power 

the greater the trapping force.

Interestingly, it would be expected that the percentage of photons reflected, 

transmitted and absorbed would stay the same as the power is increased as
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a material’s transmission coefficient is not dependent upon power (34). A 

transmission coefficient is simply a ratio. Therefore, if the forces at low 

powers are sufficiently balanced that the object can be trapped, why does 

doubling the power, for example, mean that the trap is no longer 

sustainable? It seems reasonable to expect a doubling of the laser power 

would double each of the forces, as has been shown to be the case for 

colourless spheres (32). As can be seen from the table, at low powers even 

the lighter coloured spheres are no longer trappable as the pushing forces 

become too great for the scattering forces to overcome.

A possible cause of this problem is a change in the energy distribution of 

the beam through the attenuation process. A power meter measures the 

power incident upon its detector, so as attenuation is reduced, the power 

meter detects more power, however, it does not measure any change in the 

distribution of the energy. A Gaussian beam will exist regardless of the 

level of attenuation; however, the distribution of power in the Gaussian 

may vary. For example, for a highly attenuated beam, the ‘wings’ or 

‘edges’ of the beam may make up a greater proportion of the beam than a 

non-attenuated beam, in the centre of which resides the vast majority of the 

beam power. Consequently, though the percentage of the total power 

incident upon a sphere transmitted and absorbed should not change, as the 

power varies, the dimensions of the Gaussian may vary. The highly 

attenuated beam will possess greater relative power in its ‘edges’ and thus 

generate greater relative scattering forces. In contrast, the non-attenuated 

beam will have much less power in its edges, as a proportion, and thus, the 

gradient forces will dominate and the pushing forces caused by photons 

reflecting or being absorbed will outweigh the small scattering forces.

Another suggested possible cause is differential heating across the sphere, 

with the side nearest the laser being heated relative to the sphere side
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furthest from the laser, causing a resultant force. However, this is ruled out 

as a cause of the sphere’s expulsion from the trap due to the instantaneous 

and high energy nature of the sphere’s ejection once the laser reaches a 

critical power. If differential heating were the cause, it is reasonable to 

assume there would three regimes:

1. A critical power below which heat is dissipated as quickly as it was 

accumulated by the microsphere.

2. A range of powers at which there was a slow temperature rise on 

one side of the sphere generating a force.

3. A critical power at which the sphere’s temperature was increased 

quickly enough to cause an ‘instantaneous’ ejection from the trap.

The second phase, as set out above, was not observed during any of the 

experiments. The laser power was either low enough to loosely trap the 

microsphere (or not affect it at all) or large enough to instantly ‘fire’ the 

sphere from the trap and out of the focal plane of the camera.

In summary, it has been shown that the transparency of a sphere is critical 

for optical trapping to occur. Without transmission of the vast majority of 

photons, no scattering force is generated, causing the sphere to be trapped 

in x and y but then ‘fired’ in the direction of the beam. This is in line with 

previously reported work which, although used transparent spheres, did not 

have a high enough NA objective to generate the scattering forces 

(1,7,8,20,114). Going beyond the literature, it has been reasoned that the 

relative power distribution of the beam is the likely cause of the witnessed 

effect of coloured spheres being ejected from the optical trap above a 

critical laser power. This knowledge can be used to reason further, that for 

the transparent microspheres, it is not simply laser power that affects the
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trap stiffness (although this is still a major factor) but the distribution of the 

photon flux across the sphere. For example, a less sharply pointed 

Gaussian beam, with a greater proportion of energy at the extremities of 

the laser spot would generate greater scattering forces but would produce 

smaller the gradient forces. This may manifest itself as an apparent lower 

trap stiffness, but in reality the stiffness of the trap would have been 

reduced in x and y but increased along the z axis (the direction of the 

laser).

6.3 Manipulating Metallic Particles Using Annular Shaped Beams 

From Spatial Light Modulator (SLM)

6.3.1 Introduction

Optical trapping naturally lends itself to objects made of a highly 

transmissive material such as silica or uncoloured polystyrene. However, in 

an attempt to develop engineering applications it is necessary to explore 

the possible use of other materials such as metals. The major difference 

between metallics and dielectrics, in the context of optical trapping, is the 

transmission/absorption coefficients. As conventional optical trapping is 

entirely dependent on the scattering of photons, as discussed in chapter 2, it 

is cleai* the trapping of metallics will require a different phenomenon.

Here, annular beams are produced using an SLM, as a method of 

manoeuvring copper particles. It is worth noting that unlike the silica 

spheres used in other studies, the copper particles are not uniform. They 

vary in shape and have diameters ranging from approximately 1-10 pm.
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6.3.2 Experimental Method

A low concentration sample was made up using micro-scale copper 

particles in distilled water, with a drop of the Kodak solution. The sample 

was sealed in the microscope cavity-cover slip setup shown in Figure 6.1. 

The sample was then loaded into the system which is described in detail in 

Chapter 3.

Using the Holoeye software, computer generated holograms (CGH) were 

pre-generated and then used on the SLM, which is the 532nm laser line, to 

produce an image of choice. This method does not have the real time 

modification ability available with the Blue Tweezers software, but does 

allow for the production of simple holograms of any given two 

dimensional shape. The software is set up to take bitmap (.bmp) files and 

produce the associated Computer Generated Hologram or CGH.
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Figure 6.2: The bitmap, made simply in Microsoft Paint, is then inputted 

into the Holoeye software to produce the hologram shown in the 

subsequent figure.

Figure 6.3: The CGH produced by the Holoeye software from the bitmap 

image shown in the previous figure.

179



Joseph L Croft Engineering Applications of the Optical Trap

Figure 6.4: Image of the produced annular ring. The top right annular ring 

is the real image. The bottom left ring is the ‘ghost’ image with 

considerably less power. In the centre is the zero order which still contains 

over half of the total power. The dark objects are micro scale copper

particles.

6.3.3 Results and Discussion

It was found that at high power, as the edge of the annular beam comes 

into contact with a copper particle, the particle is ‘pushed’ out of the focal 

plane by the photon momentum forces due to photon absorption/reflection 

at the copper surface, in the direction of laser beam propagation.

At low power, the beam is unable to impart sufficient momentum in the 

copper particle to cause any change in the object position.

However, it was found that if the power is ‘tuned’ precisely, it was possible 

to select a laser power which will gain a response from the copper particle
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large enough to move it, but small enough that the copper particle does not 

leave the focal plane.

This precise power is difficult to quantify for a variety of reasons. Firstly, 

as described in Chapter 3, all powers are measured after the mechanical 

shutter in the standard setup. Secondly, when the SLM is in use, a large 

proportion, approximately 50-60%, of the power remains in the zero order. 

The rest will be in higher orders, such as the generated annular beam. 

Furthennore, the power distribution around the annular beam is not 

necessarily uniform. Finally, as the copper particles are non-uniform, they 

vary in size and thus mass. Consequently different sized objects require 

different powers. That said, it was found that, for most particles, powers of 

10-20mW were capable of moving the objects without causing too large a 

momentum transfer.

The correct power selection is only part of the issue. The other critical 

factor is the beam shape, specifically (as shown in Figure 6.5) the diameter 

across the ‘no beam’ area of the annular beam, [3, and the width of the ring, 

a.

Figure 6.5: The dimensions of annular beam
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It was found that minimising a is desirable. As it is just the inside of the 

ring that makes contact with the copper object before the particle moves, 

the rest of the ring is not assisting in the process but merely using energy 

that could be better employed elsewhere. With a minimised the process is 

markedly more efficient. With a minimised manipulation of the copper 

objects can be achieved with less than Imw. Before a was minimised this 

required power was >30mW.

Figure 6.6: Annular beams generated using a smaller value of a than used 

in Figure 6.4. The upper left ring is the actual beam. The bright spot in the

centre is the zero order.

The lower value of a produces the ring in Figure 6.6 and allows a greater 

proportion of the laser power to be utilised by the ring in manipulating the 

copper particles as opposed to being wasted in the outer surface of the ring 

which will never come into contact with the copper objectives.
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Secondly, the dimension (J, must also be carefully selected. If p is too 

small, then both sides of the laser ring may simultaneously make contact 

with the copper object causing it to be pushed out of the focal plane.

If P is too large, as in Figure 6.6, then the process of using the beam to 

manipulate particles becomes slower. This is because the process is 

essentially a micro ‘poker’ or ‘prodder’, so if p is too large then more time 

will pass between each ‘poke’ or ‘prod’. Whereas, if the diameter, p, is 

only marginally larger than the copper particle then the ‘pokes’ will occur 

more regularly, thus achieving a much greater speed of manipulation.

An alternative method of optical ‘poking’ is to use the raw beam as a point 

source of momentum, rather than an SLM generated annular beam. During 

the work in section 6.4, a need to bring two particles together occurred. 

Using a ring, it is impossible to bring two particles into contact. As one 

particle is brought towards the other, the outer part of the annular beam 

repeatedly pushes the non-trapped object further away. In such 

circumstances, using the raw beam, at low power (less than 5mW), 

incident upon tire opposite side of the particle to the desired direction of 

movement, it is possible to manipulate the particle, slowly, to a desired 

location.

To summarise, it has been shown that the ‘tuning’ of the laser power and 

the dimensions a and [3 provide for the manipulation of the metallic objects 

in this annular* beam method. This process is not equivalent to the other 

optical trapping of metallics shown in the literature. Svoboda et al trapped 

Gold particles but of a much smaller size regime, 36nm diameter, using a 

laser with wavelength of 1047nm (115). As discussed in chapter 2, for 

objects much smaller than the wavelength of the laser, the Rayleigh regime 

governs the optical trapping phenomena. This is as opposed to the ray
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optics or scattering regime, which is dominant for in the work in this 

chapter for objects larger than the wavelength of the laser. Zhan et al have 

modelled the trapping of metallic objects in the Rayleigh regime using 

radial polarisation (116). Probably the work in in the literature most similar 

to that demonstrated in this section was achieved by Sato et al who used a 

1064nm beam at low power (less than 10 mW) to trap micron scale (2-15 

pm) gold, silver and bronze particles (117). Sato used the pushing forces, 

generated by reflections and absorptions of photons at the metal surface, 

like the work in this chapter, to form a ‘cage’ around the particle. Sato’s 

work was only able to trap in 2-dimensions. By not using a surfactant and 

allowing the metallic particle to remain affiliated the glass cover slip and 

keeping laser power low to stop the laser from pushing the metallic object 

off of the glass surface.

It is speculated that although acousto optic deflectors (AODs) (118)operate 

quite differently to SLMs (an AOD rapidly scans the beam to multiple 

locations whereas an SLM splits the beam into multiple spots or a new 

shape), AODs may nevertheless be able to manipulate metallic objects in 

the same way as has demonstrated by SLMs in this section.

In summary, this section has shown a new method for simple manipulation 

of metallic or highly reflective objects, for systems containing an SLM. 

This method is not true optical trapping in the tradition sense, as defined by 

Ashkin, but does represent, a simple method for manoeuvring metallic 

objects into a desired formation. As can be seen in the subsequent section, 

the ability to place metallic objects in a specific location enables further 

work and opens new possibilities to optical trapping engineering tool.
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6.4 Fusing microspheres to each other

6.4.1 Introduction

As the purpose of this thesis was to find and develop engineering 

applications for optical traps it was natural that nano (or indeed micro) 

fabrication would be an avenue of interest. It was hypothesised that optical 

traps could be used as a construction tool for nano or micro scale devices. 

The ability of optical traps to manipulate and position objects in precise 

formations or arrays could be harnessed, as already shown by attaching 

them to a substrate in chapter 5, but another possibility would be to bond 

them to each other to form a more complex structure. The most 

fundamental technique required to achieve this aim of taking unit pieces of 

material and turn them into a useful tool is a method of joining the pieces 

of material together. In macro scale devices joining methods can be split 

into roughly three methods:

1. Using a small ‘joining device’ the equivalent of a nail or screw.

2. Using a chemical bonder of some sort, i.e. either an adhesive or 

some form of solvent based welding.

3. Using a physical process which involves no extra part or chemical 

reaction except for that caused by the heat from the laser beam like 
welding.

As the silica microspheres are already of such a small size (1.54, 2,44 or 

5.44 pm) it seems natural to dismiss attempting to recreate the above 

method 1. However, either of the subsequent two methods are possible 

options for methods of joining the microspheres. Method 2 would require
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the microspheres to have a chemical coating of some sort and has been 

previously achieved as discussed in chapter 2(43,44). Method 3 would 

represent new work though it is perhaps the most difficult method to 

control as it is simply attempting to raise the temperature of the 

microspheres sufficiently high that they are able to fuse while holding them 

firmly against one another. Nevertheless, method 3 represented a new 

engineering based application for optical trapping and was consequently 

pursued.

There were various difficulties with this task. The most fundamental issue 

was associated with the transmissivity of the fusing material. If the 

coefficient of transmission is too large, the photons will simply pass 

through the material without imparting any heat into the microsphere. 

Equally, if the coefficient of transmission is too small, too many photons 

will be absorbed, (indeed leading to heating) or reflected, leading to the 

passing of the collective momentum of the photons to the microsphere 

causing the ‘firing’ of the microsphere away from the trap focus.

The final problematic issue was the surface area to volume ratio. The 

microspheres have exceptionally large surface areas relative to their 

volumes and are consequently extremely effective at losing heat to their 

surroundings. This means that the microspheres dissipate heat rapidly, thus 

making it harder to achieve the necessary high temperatures. Moreover, 

attempting to heat an object surrounded by a natural coolant, such as water, 

is difficult. Consequently, it was decided that, assuming the initial tests 

were unsuccessful, secondary tests would be undertaken on ‘dried out’ 

samples to see if greater temperatures could be achieved without the water 

coolant.
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6.4.2 Experimental Method

The samples were set up without the use of a nail polish seal around the 

edge of the sample as the drying out of samples was desired for secondary 

tests to see if without the water coolant, higher temperatures in the 

microspheres could be reached. Both the attempts to fuse the silica and the 

metallic particles (copper, gold and zinc) employed the spacer method of 

sample setup (as opposed to the microscope slide cavity method) as shown 

in Figure 6.7:

Two cover slips

Spacer used to 
separate the two 
cover slips

Figure 6.7: The spacer method of sample preparation. The spacer is a thin 

polymer square sticker with a circular hole within which the microsphere 

filled water sits. It is encased by two (0.17mm thick) cover slips.

The green 532nm trapping laser was operated at 125-175mW in order to 

maximise the trap stiffness to increase the stability of the trapped sphere. 

Also, any additional heating caused by the laser would only assist the 

process.
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The 1064nm laser (SPI) was used as the heating laser and was operated in 

pulsed mode with a repetition rate of 125 kHz at an average power of 

200m W.

The first experiment used silica microsphere (1.54, 2.44 and 5.44 pm) and 

the second experiment used metallic particles on the micron scale. The 

metallic particles used were copper, gold and zinc, these particles are far 

less uniform than the silica spheres but are observed to be on the region of 

2-10pm in diameter. The set up above was the same for both the silica and 

metallic experiments. However, the method employed for the fusing of 

silica and then the fusing of metallics was different and has consequently 

been set out below in separate sections.

6.4.2.1 Experimental Method for Fusing of Silica

Initially, the SLM was harnessed to produce two trapping sites and to then 

bring the two spheres together (through use of Glasgow’s Blue Tweezers 

program). However, one trapping site would usually overpower the other 

trapping site leading to both microspheres falling into the same trap. This is 

an inherent difficulty with using an SLM to bring two small objects 

together, where small is defined as smaller than the spot size generated by 

the SLM (which is approximately 5 pm). This is less problematic for larger 

objects, where the diameters of the objects are much greater than the width 

of the optical trap potential well. In these instances, both objects can be 

trapped with their surfaces in contact with each other, without them being 

drawn into the same trapping well.
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The solution for bringing two silica spheres together was to find a silica 

sphere adhered to the cover slip surface (even with a drop of surfactant 

within the sample there are still a proportion of sphere that affiliate 

strongly to the cover slip surface). The SLM was then used to produce one 

happing site to trap and move a free moving sphere over to the ‘fixed’ 

sphere. Once the spheres were pressed firmly against one another, with the 

contact point positioned at the point of focus of the higher power 1064nm 

beam (which was focused to the same plain as the 532nm beam), the 

pulsed beam shutter was opened allowing the higher power infrared beam 

to strike the point of contact in an attempt to cause fusion.

For the dried out sample (with all the spheres are now adhered to the 

surface) the sample was scanned to find two spheres in contact. At which 

point the 1064nm laser was aimed at the point of contact and the shutter 

opened. This did not require the use of the optical trap and was a simple 

experiment to establish if enough heat could be absorbed by the silica to 

melt its surface and cause two spheres to fuse.

6.4.2.2 Experimental Method for Fusing of Metallics

The metallic particles were generally larger than the silica microspheres 

usually used in the trap. They were also not spherical. Their random shapes 

made the repetition of experiments difficult. As seen in section 6.3, 

metallic particles cannot be conventionally happed like silica sphere can 

due to their low transmission and high reflection coefficients. 

Consequently, the metallic particles were brought together using the 

532nm trapping laser at low power as an optical ‘poker’ as discussed in 

section 6.3. Once two particles were in contact, the focus of the 1064nm 

pulsed high power laser (SPI) was positioned carefully at the point of
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contact between the two particles using the stage positioning software. 

Once in position the laser was fired at the point of contact. The particles 

were then ejected from the focal plane as the photons impacted and were 

absorbed at the surface of the particles and thus transferring their 

momentum to the particles.

The metallic samples were then allowed to ‘dry out’ in order to allow all 

the metallic objects to become affiliated to the cover slip surface. The dried 

out samples (with all the metallic particles now adhering to the surface) 

were then scanned in an attempt to find two metallic particles in contact. 

Then, the 1064nm laser focus was targeted at the point of contact and the 

shutter opened.

6.4.2.3 Results and Discussion

As these tests are largely binary in outcome, that is, they fuse or do not 

fuse, it is difficult to show visually the results. Nevertheless, Table 6.2 

shows the outcome of attempts to fuse two spheres of the same material. 

The wet sample column shows the results for when the spheres were in 

water. The dry sample column shows the results for attempts made on 

spheres once the water had dried out.

Material Size (|im) Wet sample Dry sample

Silica 1.54,
2.44, 5.44

No evidence of any 
absorption or fusion by the 
silica beads.

Once the samples dry, the 
silica spheres were fixed 
firmly to the cover slip 
surface. After which no 
discernible effect could be
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achieved with no evidence of 
the spheres fusing together.

Copper 2< x < 
<10

While in the water, they are 
highly absorbent and thus 
are ‘fired’ away from the 
focal plane whenever they 
are hit by any large powers, 
see Figure 6.9.

Some evidence of fusion of 
two copper particles
documented, see Figure 6.9. 
Ablation of the glass cover slip 
was achieved in areas below a 
copper particle as the copper 
particle assisted in the 
coupling in of the 1064nm 
laser into the surface, see 
Figure 6.11 and 6.12.

Gold 2< x < 
<10

‘Fired’ away by photon 
momentum. No effect observed.

Zinc 2< x < 
<10

‘Fired’ away by photon 
momentum.

Some coupling in of energy, as 
with copper, observed, but to a 
far smaller degree than with 
the copper particles.

Table 6.2 - Laser fusing of microspheres within an optical trap

As can be seen from the table, the ability to fuse metallics in water is 

extremely difficult due to the transmission properties of the materials. 

Equally, the high transmissivity of silica meant that only a small proportion 

of the available energy was absorbed, resulting in little heating of the 

particles.
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Figure 6.8: Four stages of an attempt to fuse two copper particles

Figure 6.8 shows the ‘optical poking’ method, described in section 6.3, 

employed to bring two copper particles together in (a) and (b). Once the 

two particles were in contact the 1064nm laser was targeted at the point of 

contact in (c) and the shutter was opened. Instantly, the upper particle was 

‘fired’ away, (d), upon the impact of the photons on one edge of the object.

Figure 6.9: Fusing of two copper particles in a dried out sample.
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Figure 6.9 shows the fusing of two copper objects using the 1064nm laser 

in a dried out sample. With no water in the sample, the objects rest on the 

cover slip and the photon momentum forces are outweighed by the Van der 

Waals forces. Here, the sample was scanned to find two separate particles, 

(a) which set very close together. With their position fixed at the surface by 

the Van der Waals forces, the photons cannot ‘push’ the particles away 

through photon absorption or reflection. Consequently, the photons couple 

in to the particles at the regions nearest each other and, after approximately 

1-10 seconds, they appear to have fused.

One of the interesting outcomes of the work, while trying to fuse the 

copper, was the initiation of ablation of the near glass cover slip but only in 

areas with copper above it. It was noticed that rather than causing any 

response from the copper, the glass cover slip quickly began to ablate. 

However, when the laser was directed at the glass, in areas without copper, 

the laser would either not ablate or take much longer to generate an initial 

ablation. The setup is shown in Figure 6.10.

Cover slips

Micron order Copper

1064nm SPI Laser
Figure 6.10: Setup with which the ablation of the cover slip was achieved.
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Once ablation was initiated in an area underneath a copper particle, the 

stage was then translated and the ablation would continue along the glass, 

even in areas of no copper as shown in Figure 6.11.

Figure 6.11: (a) Initial ablations of glass, (b) Further ablation of the glass 

cover slip, (c) Continuous line ablated
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Figure 6.12: The ablations in the glass cover slip produced by the 1064nm 

laser with the assistance of the surface copper in a dried out sample.

Figure 6.11 consists of screen shots taken of the ablations while still on the 

trapping system, whereas Figure 6.12 is taken later on an optical 

microscope. The optical microscope image shows that this method 

achieves spot widths of approximately 4.2jim. Although this value is still 

an order of magnitude larger than the diffraction limit, it is nevertheless a 

small and repeatable feature size. Furthermore, the phenomenon of copper 

on the glass surface assisting in ablation of the glass is an interesting 

outcome of the work. Although not previously seen in an optical trapping 

setting, it is not a new concept to use a coating to assist a laser in coupling 

in to a substrate (119,120). However, the new aspect to this result is that 

the ‘coating’, the copper particles, is beyond the glass substrate (i.e. not on 

the side of the glass that the laser is incident), and surface ablated is the far 

side of the glass substrate relative to the laser, as shown in figure 6.10. As
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the copper particles are beyond the glass substrate it seems a reasonable 

assumption that the copper particles are either reflecting photons back 

directly, or heating up and then dissipating their heat to the surrounding 

area including the glass substrate. This could have implications for 

traditional laser materials processing.

6.5 General Discussion and Conclusions

This chapter shows that there are still many avenues to explore with 

regards to engineering applications for optical traps.

The attempted, and for certain parameters, successful, manipulation of 

coloured spheres was revealing in that it reinforced trapping theory. The 

trapping of the darker coloured spheres appears to be beyond conventional 

trapping techniques. As it is, the z trapping force is insufficient to 

accommodate the greater absorption of photon momentum caused by 

darker coloured spheres. A microscope objective of higher numerical 

aperture (NA) would provide a greater trapping force in z. The NA of the 

current objective is already 1.2, so there are not major increases available. 

Currently, microscope objectives are available in the region of 1.4 NA. 

Even if higher NA objectives were available, they would only be useful in 

situations where a significant proportion of photons were refracted through 

the sphere, which currently does not appear to be the case. It is possible 

that though these spheres are highly absorbent to visual wavelengths, they 

may be more transmissive at other wavelengths. Accordingly, attempts to 

trap coloured spheres using other wavelength lasers should be investigated.
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As for the lighter coloured spheres, pink and yellow, as discussed 

previously, it may be the relative shape of the Gaussian beam that is the 

significant factor. Therefore, it may be possible to manipulate the 

Gaussian’s relative shape using the SLM, in order to place more energy 

into the ‘wings’ of the beam. With further investigation this may provide 

for the ability to trap the lighter coloured spheres at greater laser power and 

thus greater trap stiffness. Alternatively, although in a different context, 

work has been reported in the optical trapping field which used radial 

polarisation to increase the scattering forces relative to the gradient forces 

and thus reduced the resultant pushing effect (116,121). Radial polarisation 

would require non-typical optics to be added to the system (122).

Fusing of particles directly, without chemical assistance, seems unlikely 

due to the inherent problem with achieving the correct level of 

absorption/transmission. Additionally, the natural cooling effect of the 

surTounding water further compounds the problem. However, with use of a 

chemical coating, the process of joining particles is significantly more 
manageable (44,123)

The process of ablating the glass, discovered during the copper experiment, 

produced very fine features in a controlled manner. The feature sizes are 

not as small as those produced using near field processing, but the process 

could be an alternative to the near field processing work being undertaken 

by other research groups (57,124),

Manipulation of metallics, as opposed to dielectrics such as silica, with 

optical traps, is clearly a quite different phenomenon and needs to be 

treated as such. For basic manoeuvring applications, the optical ‘poking’ 

method suggested in this Chapter is sufficient. However, for genuine 

optical trapping of metallics, Rayleigh regime sized particles have been 

trapped (17,116) and by using unconventional optics to generate Bessel
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beams, optical trapping of micron scale metallics (125) has been 

previously demonstrated. However, for optical trapping systems already 

employing an SLM, the ‘ring’ method suggested in this chapter offers a 

simple method for quick metallic particle placement and manipulation 

within an optical trapping system.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The work in this thesis has focussed upon two main areas:

1. Developing a complex and versatile optical trapping system for use 

as an engineering tool.

2. Investigating new and novel engineering applications for the 

optical trap.

The main outcomes of this research study are:

• The design, building and development of a multifaceted optical 

trapping system which includes a dual laser line setup with the
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ability to shift their relative focuses, giving the system unique 

capabilities.

• The investigation and relative merit of various methods of 

determining the trap stiffness.

• The investigation into the effect of the direction of linear 

polarisation of the trap stiffness which suggests the direction of 

polarisation does not have a major effect on trap stiffness.

• The successful embedding of 5.44|im silica spheres into a 

thermosetting polymer in a controlled manner.

• The harnessing of SLMs to generate annular beam profiles for the 

indirect manipulation of metallic particles. This process has been 

refined for greater efficiency.

• The observation of repeatable ablations (4pm) in width, on glass 

cover slips with copper particles on the surface, used to assist in the 

coupling in of photon energy into the glass substrate.

Optical Trapping is still a developing technology. It is imperative for its 

continued development that its users look to increase its capabilities. It is 

natural for users, for example in the biosciences field, to continue to pursue 

experiments and investigations already achievable with current optical 

trapping setups. As successful as many of these investigations may be, it is 

important that such successes do not lead the technology to fail to progress. 

Consequently, it is essential for optical engineers to maintain strong 

relations with the biosciences field, so that as new studies are devised,
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which require greater capabilities from an optical happing system, 

engineers can be readily available to address such issues.

Despite the continued assistance in the biosciences field, it is important not 

to categorise optical happing as an entirely biosciences tool. Indeed, doing 

so might well lead to its fulfilment as such, but could deprive science of 

many other potential applications for optical traps.

The work in this thesis outlines the current ‘state of the ait’ of optical 

happing, particularly with regal'd to its engineering applications, and it 

pursues a variety of engineering applications; suggesting progress and 

research possibilities and documenting various applications which showed 

less research promise.

The embedding of spheres in a controlled manner has the potential to be a 

new and novel tool within micro manufacturing, so developing the optical 

trapping research landscape.

7.2 Future Work

The outcomes in Chapter 5 of this document suggest the need for further 

work. The manufacture of a device, containing embedded microspheres in 

a specific accurate array, capable of controlled near field processing would 

be the next step in the development of such work and could open up a 

whole new technology for industrial laser processing, allowing marking of 

materials well below the diffraction limit in large and repeatable arrays.

The work in Chapter 4 attempted to quantify and evaluate the forces in 

optical trapping, investigating the asymmetry of the trapping forces and
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how such forces change with various parameters. Such a study shows the 

current difficulties associated with the use of QDs and why many research 

groups are now considering high frame rate cameras as the superior, or 

perhaps more accurately, simpler option.

The developing technology of SLMs is increasingly providing for greater 

control and beam manipulation. The latest generation of SLMs now 

provide the capability for precise selection of the polarisation state of the 

beam. A thorough study investigating the effect on trap stiffness of novel 

polarization states would certainly be of interest from a fundamental 

perspective. From a modelling perspective, there now exist two types of 

model; one for each of the two trapping regimes. Attempts to bridge the 

gap have been limited so it seems natural that the next direction for such 

work would be to create a model to describe optical trapping for objects in 

the size region between the two regimes. The escape force experiment in 

Chapter 4 showed the existence of two distinct trapping force regimes. 

With access to additional sizes of microsphere this could be investigated 

experimentally.
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