1,683 research outputs found

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    The Skewness of the Aperture Mass Statistic

    Full text link
    We present simple formulae for calculating the skewness and kurtosis of the aperture mass statistic for weak lensing surveys which is insensitive to masking effects of survey geometry or variable survey depth. The calculation is the higher order analog of the formula given by Schneider et al (2002) which has been used to compute the variance of the aperture mass from several lensing surveys. As our formula requires the three-point shear correlation function, we also present an efficient tree-based algorithm for measuring it. We show how our algorithm would scale in computing time and memory usage for future lensing surveys. Finally, we apply the procedure to our CTIO survey data, originally described in Jarvis et al (2003). We find that the skewness is positive (inconsistent with zero) at the 2 sigma level. However, the signal is too noisy from this data to usefully constrain cosmology.Comment: 16 pages, accepted by MNRAS. Minor revisions; this replacement matches the accepted versio

    Direct Signature of Evolving Gravitational Potential from Cosmic Microwave Background

    Full text link
    We show that time dependent gravitational potential can be directly detected from the cosmic microwave background (CMB) anisotropies. The signature can be measured by cross-correlating the CMB with the projected density field reconstructed from the weak lensing distortions of the CMB itself. The cross-correlation gives a signal whenever there is a time dependent gravitational potential. This method traces dark matter directly and has a well defined redshift distribution of the window projecting over the density perturbations, thereby avoiding the problems plaguing other proposed cross-correlations. We show that both MAP and Planck will be able to probe this effect for observationally relevant curvature and cosmological constant models, which will provide additional constraints on the cosmological parameters.Comment: 4 pages, 2 figures. Submitted to PR

    Interpolating Masked Weak Lensing Signal with Karhunen-Loeve Analysis

    Full text link
    We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomplete coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.Comment: 13 pages, 9 figures; submitted to Ap

    Interference in Exclusive Vector Meson Production in Heavy Ion Collisions

    Get PDF
    Photons emitted from the electromagnetic fields of relativistic heavy ions can fluctuate into quark anti-quark pairs and scatter from a target nucleus, emerging as vector mesons. These coherent interactions are identifiable by final states consisting of the two nuclei and a vector meson with a small transverse momentum. The emitters and targets can switch roles, and the two possibilities are indistinguishable, so interference may occur. Vector mesons are negative parity so the amplitudes have opposite signs. When the meson transverse wavelength is larger than the impact parameter, the interference is large and destructive. The short-lived vector mesons decay before amplitudes from the two sources can overlap, and so cannot interfere directly. However, the decay products are emitted in an entangled state, and the interference depends on observing the complete final state. The non-local wave function is an example of the Einstein-Podolsky-Rosen paradox.Comment: 13 pages with 3 figures; submitted to Physical Review Letter

    Reconstructing Projected Matter Density from Cosmic Microwave Background

    Get PDF
    Gravitational lensing distorts the cosmic microwave background (CMB) anisotropies and imprints a characteristic pattern onto it. The distortions depend on the projected matter density between today and redshift z1100z \sim 1100. In this paper we develop a method for a direct reconstruction of the projected matter density from the CMB anisotropies. This reconstruction is obtained by averaging over quadratic combinations of the derivatives of CMB field. We test the method using simulations and show that it can successfully recover projected density profile of a cluster of galaxies if there are measurable anisotropies on scales smaller than the characteristic cluster size. In the absence of sufficient small scale power the reconstructed maps have low signal to noise on individual structures, but can give a positive detection of the power spectrum or when cross correlated with other maps of large scale structure. We develop an analytic method to reconstruct the power spectrum including the effects of noise and beam smoothing. Tests with Monte Carlo simulations show that we can recover the input power spectrum both on large and small scales, provided that we use maps with sufficiently low noise and high angular resolution.Comment: 21 pages, 9 figures, submitted to PR

    Non-Gaussian bubbles in the sky

    Full text link
    We point out a possible generation mechanism of non-Gaussian bubbles in the sky due to bubble nucleation in the early universe. We consider a curvaton scenario for inflation and assume that the curvaton field phi, whose energy density is subdominant during inflation but which is responsible for the curvature perturbation of the universe, is coupled to another field sigma which undergoes false vacuum decay through quantum tunneling. For this model, we compute the skewness of the curvaton fluctuations due to its interaction with sigma during tunneling, that is, on the background of an instanton solution that describes false vacuum decay. We find that the resulting skewness of the curvaton can become large in the spacetime region inside the bubble. We then compute the corresponding skewness in the statistical distribution of the cosmic microwave background (CMB) temperature fluctuations. We find a non-vanishing skewness in a bubble-shaped region in the sky. It can be large enough to be detected in the near future, and if detected it will bring us invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure

    CMB Anisotropy Induced by Cosmic Strings on Angular Scales > 15>~ 15'

    Get PDF
    We have computed an estimate of the angular power spectrum of the Cosmic Microwave Background (CMB) induced by cosmic strings on angular scales > 15>~ 15', using a numerical simulation of a cosmic string network; and decomposed this pattern into scalar, vector, and tensor parts. We find no evidence for strong acoustic oscillations in the scalar anisotropy but rather a broad peak. The anisotropies from vector modes dominate except on very small angular scales while the tensor anisotropies are sub-dominant on all angular scales. The anisotropies generated after recombination are even more important than in adiabatic models. We expect that these qualitative features are robust to the varying of cosmological parameters, a study which has not yet been done.Comment: 4 pages, 2 figure

    Delensing Gravitational Wave Standard Sirens with Shear and Flexion Maps

    Get PDF
    Supermassive black hole binary systems (SMBHB) are standard sirens -- the gravitational wave analogue of standard candles -- and if discovered by gravitational wave detectors, they could be used as precise distance indicators. Unfortunately, gravitational lensing will randomly magnify SMBHB signals, seriously degrading any distance measurements. Using a weak lensing map of the SMBHB line of sight, we can estimate its magnification and thereby remove some uncertainty in its distance, a procedure we call "delensing." We find that delensing is significantly improved when galaxy shears are combined with flexion measurements, which reduce small-scale noise in reconstructed magnification maps. Under a Gaussian approximation, we estimate that delensing with a 2D mosaic image from an Extremely Large Telescope (ELT) could reduce distance errors by about 30-40% for a SMBHB at z=2. Including an additional wide shear map from a space survey telescope could reduce distance errors by 50%. Such improvement would make SMBHBs considerably more valuable as cosmological distance probes or as a fully independent check on existing probes.Comment: 9 pages, 4 figures, submitted to MNRA
    corecore