Photons emitted from the electromagnetic fields of relativistic heavy ions
can fluctuate into quark anti-quark pairs and scatter from a target nucleus,
emerging as vector mesons. These coherent interactions are identifiable by
final states consisting of the two nuclei and a vector meson with a small
transverse momentum. The emitters and targets can switch roles, and the two
possibilities are indistinguishable, so interference may occur. Vector mesons
are negative parity so the amplitudes have opposite signs. When the meson
transverse wavelength is larger than the impact parameter, the interference is
large and destructive.
The short-lived vector mesons decay before amplitudes from the two sources
can overlap, and so cannot interfere directly. However, the decay products are
emitted in an entangled state, and the interference depends on observing the
complete final state. The non-local wave function is an example of the
Einstein-Podolsky-Rosen paradox.Comment: 13 pages with 3 figures; submitted to Physical Review Letter