90 research outputs found
Predominance of weakly cytotoxic, T-betLowEomesNeg CD8+ T-cells in human gastrointestinal mucosa: implications for HIV infection.
The gastrointestinal mucosa is an important site of HIV acquisition, viral replication, and pathogenesis. Immune cells in mucosal tissues frequently differ in phenotype and function from their non-mucosal counterparts. Although perforin-mediated cytotoxicity as measured in blood is a recognized correlate of HIV immune control, its role in gastrointestinal tissues is unknown. We sought to elucidate the cytotoxic features of rectal mucosal CD8+ T-cells in HIV infected and uninfected subjects. Perforin expression and lytic capacity were significantly reduced in rectal CD8+ T-cells compared with their blood counterparts, regardless of HIV clinical status; granzyme B (GrzB) was reduced to a lesser extent. Mucosal perforin and GrzB expression were higher in participants not on antiretroviral therapy compared with those on therapy and controls. Reduction in perforin and GrzB was not explained by differences in memory/effector subsets. Expression of T-bet and Eomesodermin was significantly lower in gut CD8+ T-cells compared with blood, and in vitro neutralization of TGF-β partially restored perforin expression in gut CD8+ T-cells. These findings suggest that rectal CD8+ T-cells are primarily non-cytotoxic, and phenotypically shaped by the tissue microenvironment. Further elucidation of rectal immune responses to HIV will inform the development of vaccines and immunotherapies targeted to mucosal tissues
HIV Infection and Gut Mucosal Immune Function: Updates on Pathogenesis with Implications for Management and Intervention
HIV is primarily a sexually transmitted infection. However, given that the gastrointestinal tract (GIT) houses most of the body’s lymphocytes, including activated memory CD4+ T cells that are preferential targets for HIV, recent research has focused on the role of the GIT in transmission and pathogenesis. In health, the GIT maintains a balance between immune tolerance and rapid responsiveness. A complex network of innate and adaptive responses maintains this balance, which is severely perturbed in HIV infection. Recent studies have focused on mechanisms of GIT CD4+ T-cell depletion and epithelial disruption in HIV infection, the role of inflammation in accelerating viral dissemination, the kinetics of the adaptive response following transmission, and the extent of T-cell reconstitution following antiretroviral therapy. This review summarizes the results of recent investigations that may have important implications for the development of vaccines, microbicides, and therapeutic interventions for HIV and other mucosal pathogens
Magnitude and Complexity of Rectal Mucosa HIV-1-Specific CD8+ T-Cell Responses during Chronic Infection Reflect Clinical Status
The intestinal mucosa displays robust virus replication and pronounced CD4+ T-cell loss during acute human immunodeficiency virus type 1 (HIV-1) infection. The ability of HIV-specific CD8+ T-cells to modulate disease course has prompted intensive study, yet the significance of virus-specific CD8+ T-cells in mucosal sites remains unclear.We evaluated five distinct effector functions of HIVgag-specific CD8+ T-cells in rectal mucosa and blood, individually and in combination, in relationship to clinical status and antiretroviral therapy (ART). In subjects not on ART, the percentage of rectal Gag-specific CD8+ T-cells capable of 3, 4 or 5 simultaneous effector functions was significantly related to blood CD4 count and inversely related to plasma viral load (PVL) (p<0.05). Polyfunctional rectal CD8+ T-cells expressed higher levels of MIP-1beta and CD107a on a per cell basis than mono- or bifunctional cells. The production of TNFalpha, IFN-gamma, and CD107a by Gag-specific rectal CD8+ T-cells each correlated inversely (p<0.05) with PVL, and MIP-1beta expression revealed a similar trend. CD107a and IFN-gamma production were positively related to blood CD4 count (p<0.05), with MIP-1beta showing a similar trend. IL-2 production by rectal CD8+ T-cells was highly variable and generally low, and showed no relationship to viral load or blood CD4 count.The polyfunctionality of rectal Gag-specific CD8+ T-cells appears to be related to blood CD4 count and inversely related to PVL. The extent to which these associations reflect causality remains to be determined; nevertheless, our data suggest a potentially important role for mucosal T-cells in limiting virus replication during chronic infection
MiRNA Control of Vegetative Phase Change in Trees
After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees
Potent interaction of flavopiridol with MRP1
The multidrug resistance protein 1 (MRP1) is an ATP-dependent transport protein for organic anions, as well as neutral or positively charged anticancer agents. In this study we show that flavopiridol, a synthetic flavonoid currently studied in phase 1 trials for its anti-proliferative characteristics, interacts with MRP1 in a potent way. Flavopiridol, as well as other (iso)flavonoids stimulate the ATPase activity of MRP1 in a dose-dependent way at low micromolar concentrations. A new specific monoclonal antibody against MRP1 (MIB6) inhibits the (iso)flavonoid-induced ATPase activity of plasma membrane vesicles prepared from the MRP1 overexpressing cell line GLC4/ADR. The accumulation of daunorubicin in GLC4/ADR cells is increased by flavopiridol and by other non-glycosylated (iso)flavonoids that interact with MRP1 ATPase activity. However, flavopiridol is the only tested compound that affects the daunorubicin accumulation when present at concentrations below 1 μM. Glycosylated (iso)flavonoids do not affect MRP1-mediated transport or ATPase activity. Finally, MRP1 overexpressing and transfected cells are resistant to flavopiridol, but not to other (iso)flavonoids tested. These findings may be of relevance for the development of anticancer therapies with flavopiridol. © 1999 Cancer Research Campaig
Immunity to HIV-1 Is Influenced by Continued Natural Exposure to Exogenous Virus
Unprotected sexual intercourse between individuals who are both infected with HIV-1 can lead to exposure to their partner's virus, and potentially to super-infection. However, the immunological consequences of continued exposure to HIV-1 by individuals already infected, has to our knowledge never been reported. We measured T cell responses in 49 HIV-1 infected individuals who were on antiretroviral therapy with suppressed viral loads. All the individuals were in a long-term sexual partnership with another HIV-1 infected individual, who was either also on HAART and suppressing their viral loads, or viremic (>9000 copies/ml). T cell responses to HIV-1 epitopes were measured directly ex-vivo by the IFN-γ enzyme linked immuno-spot assay and by cytokine flow cytometry. Sexual exposure data was generated from questionnaires given to both individuals within each partnership. Individuals who continued to have regular sexual contact with a HIV-1 infected viremic partner had significantly higher frequencies of HIV-1-specific T cell responses, compared to individuals with aviremic partners. Strikingly, the magnitude of the HIV-1-specific T cell response correlated strongly with the level and route of exposure. Responses consisted of both CD4+ and CD8+ T cell subsets. Longitudinally, decreases in exposure were mirrored by a lower T cell response. However, no evidence for systemic super-infection was found in any of the individuals. Continued sexual exposure to exogenous HIV-1 was associated with increased HIV-1-specific T cell responses, in the absence of systemic super-infection, and correlated with the level and type of exposure
Tumour necrosis factor and PI3-kinase control oestrogen receptor alpha protein level and its transrepression function
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410160
The HIV-1 Transactivator Factor (Tat) Induces Enterocyte Apoptosis through a Redox-Mediated Mechanism
The intestinal mucosa is an important target of human immunodeficiency virus (HIV) infection. HIV virus induces CD4+ T cell loss and epithelial damage which results in increased intestinal permeability. The mechanisms involved in nutrient malabsorption and alterations of intestinal mucosal architecture are unknown. We previously demonstrated that HIV-1 transactivator factor (Tat) induces an enterotoxic effect on intestinal epithelial cells that could be responsible for HIV-associated diarrhea. Since oxidative stress is implicated in the pathogenesis and morbidity of HIV infection, we evaluated whether Tat induces apoptosis of human enterocytes through oxidative stress, and whether the antioxidant N-acetylcysteine (NAC) could prevent it. Caco-2 and HT29 cells or human intestinal mucosa specimens were exposed to Tat alone or combined with NAC. In an in-vitro cell model, Tat increased the generation of reactive oxygen species and decreased antioxidant defenses as judged by a reduction in catalase activity and a reduced (GSH)/oxidized (GSSG) glutathione ratio. Tat also induced cytochrome c release from mitochondria to cytosol, and caspase-3 activation. Rectal dialysis samples from HIV-infected patients were positive for the oxidative stress marker 8-hydroxy-2′-deoxyguanosine. GSH/GSSG imbalance and apoptosis occurred in jejunal specimens from HIV-positive patients at baseline and from HIV-negative specimens exposed to Tat. Experiments with neutralizing anti-Tat antibodies showed that these effects were direct and specific. Pre-treatment with NAC prevented Tat-induced apoptosis and restored the glutathione balance in both the in-vitro and the ex-vivo model. These findings indicate that oxidative stress is one of the mechanism involved in HIV-intestinal disease
Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens
Background: The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings: In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance: These findings demonstrate the possibility to enhance the immunogenicity of the highl
- …