15 research outputs found

    Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish

    Get PDF
    © 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are creditedZebrafish are able to regenerate the spinal cord and recover motor and sensory functions upon severe injury, through the activation of cells located at the ependymal canal. Here, we show that cells surrounding the ependymal canal in the adult zebrafish spinal cord express Foxj1a. We demonstrate that ependymal cells express Foxj1a from their birth in the embryonic neural tube and that Foxj1a activity is required for the final positioning of the ependymal canal. We also show that in response to spinal cord injury, Foxj1a ependymal cells actively proliferate and contribute to the restoration of the spinal cord structure. Finally, this study reveals that Foxj1a expression in the injured spinal cord is regulated by regulatory elements activated during regeneration. These data establish Foxj1a as a pan-ependymal marker in development, homeostasis and regeneration and may help identify the signals that enable this progenitor population to replace lost cells after spinal cord injury.This research was supported by FCT (Portugal) grants (PTDC/BIM-MED/1375/2012 and PTDC/BIM-MED/3295/2014) given to L.S. L.S. was supported by an IF contract from FCT (Portugal). A.R. was supported by a postdoctoral fellowship of the FCT (Portugal) (SFRH/BPD/100162/2014) and EMBO (605-2012)info:eu-repo/semantics/publishedVersio

    Elevated glucose changes the expression of ionotropic glutamate receptor subunits and impairs calcium homeostasis in retinal neural cells

    Get PDF
    PURPOSE. Altered glutamatergic neurotransmission and calcium homeostasis may contribute to retinal neural cell dysfunction and apoptosis in diabetic retinopathy (DR). The purpose of this study was to determine the effect of high glucose on the protein content of -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate glutamate receptor subunits, particularly the GluR2 subunit, because it controls Ca2 permeability of AMPA receptor-associated channels. The effect of high glucose on the concentration of cytosolic free calcium ([Ca2 ]i) was also investigated. METHODS. The protein content of GluR1, GluR2, GluR6/7, and KA2 subunits was assessed by Western blot. Cobalt staining was used to identify cells containing calcium/cobalt-permeable AMPA receptors. The [Ca2 ]i changes evoked by KCl or kainate were recorded by live-cell confocal microscopy in R28 cells and in primary cultures of rat retina, loaded with fluo-4. RESULTS. In primary cultures, high glucose significantly decreased the protein content of GluR1 and GluR6/7 subunits and increased the protein content of GluR2 and KA2 subunits. High glucose decreased the number of cobalt-positive cells, suggesting a decrease in calcium permeability through AMPA receptor-associated channels. In high-glucose–treated cells, changes in [Ca2 ]i were greater than in control cells, and the recovery to basal levels was delayed. However, in the absence of Na , to prevent the activation of voltage-sensitive calcium channels, the [Ca2 ]i changes evoked by kainate in the presence of cyclothiazide, which inhibits AMPA receptor desensitization, were significantly lower in high-glucose–treated cells than in control cultures, further indicating that AMPA receptors were less permeable to calcium. Mannitol, used as an osmotic control, did not cause significant changes compared with the control. CONCLUSIONS. The results suggest that elevated glucose may alter glutamate neurotransmission and calcium homeostasis in the retina, which may have implications for the mechanisms of vision loss in DR.Foundation for Science and Technology, Portugal and FEDER (Grant POCTI/CBO/38545/01), The Juvenile Diabetes Research Foundation, The American Diabetes Association and the Pennsylvania Lions Sight Conservation and Eye Eye Research Foundation

    Rodent models of Parkinson's disease: beyond the motor symptomatology

    Get PDF
    Parkinson's disease (PD) is classically characterized by motor symptoms; however, non-motor symptoms (NMS) are increasingly recognized as relevant in disease-state, given the associated alterations in mood (depression and anxiety) and cognition. Here, particularly in regards to NMS, we aimed to compare the motor, emotional and cognitive behavior of three animal models of PD that trigger dopaminergic (DAergic) degeneration on both brain hemispheres: (i) the 6-hydroxydopamine (6-OHDA, 8 or 6 µg) lesion model; (ii) the paraquat (PQ) induced model, and (iii) a genetic model based on a-synuclein overexpression (a-syn). 6-OHDA and a-syn vector were injected bilaterally in the substantia nigra pars compacta (SNpc) of adult male Wistar rats; as for PQ delivery, micro-osmotic pumps were implanted in the interscapular region. Motor deficits were observed in all models, with histological analysis of tyrosine hydroxylase positive cells in the SNpc revealing a significant loss of DAergic neurons in all animal models. In addition, the a-syn animal model also presented a reduction in exploratory activity, and the 6-OHDA and PQ animals displayed a significant increase in both depressive- and anxiety-like behavior. Interestingly, cognitive impairment (working memory) was only observed in the 6-OHDA model. Overall, these PD models are suitable for mimicking the motor symptoms associated to PD, with each encompassing other relevant NMS components of the disorder that may prove beneficial for further studies in PD.We would like to acknowledge the funds attributed by the Portuguese Foundation for Science and Technology (FCT), the PhD scholarships to E L. Campos (SFRH/BD/47311/2008) and M. M. Carvalho (SFRH/BD/51061/2010) and the Post-Doctoral fellowship to A. C. Cristovao (SFRH/BPD/69643/2010), and to Fundacao Calouste de Gulbenkian-Programme to Support Cutting Edge Research in Life Sciences and ICVS for funding this work. We want to further acknowledge Joao Cerqueira and Nadine Correia Santos for their contribution to this work

    one-step extraction and separation of betalains and chlorophylls using thermoreversible aqueous biphasic systems

    Get PDF
    This work was partly developed within the scope of the projects CICECO-Aveiro Institute of Materials, LA/P/0006/2020 and the Associate Laboratory for Green Chemistry-LA/P/0008/2020, financed by national funds through the FCT/MCTES (PIDDAC). Publisher Copyright: © 2023 The Royal Society of Chemistry.Globally, up to 50% of root crops, fruits and vegetables produced is wasted. Beetroot stems and leaves fit into this scenario, with only a small fraction being used in cattle food. One way of approaching this problem is through their valorisation, by extracting and recovering valuable compounds present in this type of waste that could be used in other applications, while contributing towards a circular economy. In this work, a new integrated process using thermoreversible aqueous biphasic systems (ABS) composed of quaternary ammonium-based ionic liquids (ILs) and polypropyleneglycol 400 g mol−1 (PPG) is shown to allow the one-step extraction and separation of two pigment classes—betalains and chlorophylls—from red beet stems and leaves. The pigment extraction was carried out with a monophasic aqueous solution of the IL and PPG, whose phase separation was then achieved by a temperature switch, resulting in the simultaneous separation of chlorophylls and betalains into opposite phases. A central composite design was used to optimise the extraction parameters (time, temperature, and solid : liquid (S/L) ratio) of both pigment extraction yields, reaching at 20 °C, 70 min and a S/L ratio of 0.12 a maximum extraction yield of 6.67 wt% for betalains and 1.82 wt% for chlorophylls (per weight of biomass). Moreover, it is shown that aqueous solutions of ILs better stabilise betalains than the gold standard solvent used for the extraction method. Among the studied systems, the ABS comprising the IL N-ethyl-N-methyl-N,N-bis(2-hydroxyethyl) bromide ([N21(2OH)(2OH)]Br) presented the best separation performance, with an extraction efficiency of 92% and 95% for chlorophylls and betalains, respectively, for opposite phases. The pigments were removed from the respective phases using affinity resins, with high recoveries: 96% for betalains and 98% for chlorophylls, further allowing the IL reuse. Finally, the cyto- and ecotoxicities of the quaternary ammonium-based ILs were determined. The obtained results disclosed low to negligible toxicity in the thousands of mg L−1 range, with [N21(2OH)(2OH)]Br being harmless from an ecotoxicological point of view. Overall, it is shown here that the developed process is an innovative approach for the one-step extraction and selective separation of pigments contributing to the valorisation of waste biomass.publishersversionpublishe

    Rodent Models Of Parkinson\u27S Disease: Beyond The Motor Symptomatology

    No full text
    Parkinson\u27s disease (PD) is classically characterized by motor symptoms; however, non-motor symptoms (NMS) are increasingly recognized as relevant in disease-state, given the associated alterations in mood (depression and anxiety) and cognition. Here, particularly in regards to NMS, we aimed to compare the motor, emotional and cognitive behavior of three animal models of PD that trigger dopaminergic (DAergic) degeneration on both brain hemispheres: (i) the 6-hydroxydopamine (6-OHDA, 8 or 6 μg) lesion model; (ii) the paraquat (PQ) induced model, and (iii) a genetic model based on α-synuclein overexpression (α-syn). 6-OHDA and α-syn vector were injected bilaterally in the substantia nigra pars compacta (SNpc) of adult male Wistar rats; as for PQ delivery, micro-osmotic pumps were implanted in the interscapular region. Motor deficits were observed in all models, with histological analysis of tyrosine hydroxylase positive cells in the SNpc revealing a significant loss of DAergic neurons in all animal models. In addition, the α-syn animal model also presented a reduction in exploratory activity, and the 6-OHDA and PQ animals displayed a significant increase in both depressive- and anxiety-like behavior. Interestingly, cognitive impairment (working memory) was only observed in the 6-OHDA model. Overall, these PD models are suitable for mimicking the motor symptoms associated to PD, with each encompassing other relevant NMS components of the disorder that may prove beneficial for further studies in PD. © 2013 Campos, Carvalho, Cristovão, Je, Baltazar, Salgado, Kim and Sousa

    Toxicological characterization of supported ionic liquids for the removal of non-steroidal anti-inflammatory drugs from aqueous solutions

    No full text
    Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of widely used pharmaceuticals that has been detected in the aquatic environment. Due to their deleterious environmental and health concerns associated with “boomerang” effect, several technologies have been proposed to prevent their release into the environment. In this work, new ionic liquid-based materials were used to remove NSAIDs from aqueous solutions and their potential cytotoxicity and in vivo toxicity was evaluated towards two human cell lines (Caco-2 and HepG2) and the model organism Daphnia magna. The obtained results disclose that the studied materials exhibit low cytotoxic potential with decreases in cell viability lower than 10% for Caco-2 and 30% for HepG2, and no acute toxicity towards D. magna. These promising results open the possibility of application of ionic liquid based materials in the treatment of aqueous media such as effluents and even drinking water.publishe

    A nanoformulation for the preferential accumulation in adult neurogenic niches

    No full text
    Stimulation of adult neurogenesis by targeting the endogenous neural stem cells (NSCs), located in hippocampus and subventricular zone (SVZ), with nanoformulations has been proposed for brain repair in cases of neurodegenerative diseases. Unfortunately, it is relatively unknown the nanoformulation properties to facilitate their accumulation in the neurogenic niches after intravenous injection. Here, we have screened different gold-based formulations having variable morphology, surface chemistry and responsiveness to light for their capacity to cross the blood brain barrier (BBB) and accumulate preferentially in the neurogenic niches. Results obtained in a human in vitro BBB model showed that gold nanoparticles (Au NPs) and gold nanorods (Au NRs) conjugated with medium density of transferrin (Tf) peptides (i.e. between 169 and 230 peptides per NP) crossed more efficiently the BBB than the remaining formulations. This is due to a relatively lower avidity of these formulations to Tf receptor (TfR) and lower accumulation in the lysosomes, as compared to the other formulations. We further show that the near infrared light (NIR) irradiation of Au NRs, under a certain concentration and at specific cell culture time, lead to the opening of the BBB. Finally, we demonstrate that Au NRs conjugated with Tf administered intravenously in mice and activated by NIR had the highest accumulation in the neurogenic niches. Our results open the possibility of targeting more effectively the neurogenic niches by controlling the properties of the nanoformulations
    corecore