11 research outputs found

    Signal-to-Noise Ratio importance in Apparent Diffusion Coefficient measurements using Diffusion-Weighted Echo-Planar-Imaging scans

    Get PDF
    Purpose: To define experimental grounds for Apparent Diffusion Coefficient (ADC) measurements using Spin-Echo Diffusion-Weighted Echo-Planar (SE-DW-EPI) sequences, as a function of Signal-to-Noise Ratio (SNR). Methods: multiple multi-b SE-DW-EPI scans with the same parameters but the lipid suppression technique have been compared on water phantom with a 3T MRI equipment. The SNR has been estimated using the method of difference. Images have been analyzed manually, comparing the signal intensities at different b-values. Results: All measurements show a high repeatability and strong self-consistency. A significant dependence of the ADC on SNR has been shown, and its lowest limitto obtain reliable quantitative answers has been stated. Conclusion: ADC measurements in vivo must be carefully designed to avoid systematic errors during acquisition and post-processing due to low SNR

    Nucleation of superconducting pairing states at mesoscopic scales at zero temperature

    Full text link
    We find the spin polarized disordered Fermi liquids are unstable to the nucleation of superconducting pairing states at mesoscopic scales even when magnetic fields which polarize the spins are substantially higher than the critical one. We study the probability of finding superconducting pairing states at mesoscopic scales in this limit. We find that the distribution function depends only on the film conductance. The typical length scale at which pairing takes place is universal, and decreases when the magnetic field is increased. The number density of these states determines the strength of the random exchange interactions between mesoscopic pairing states.Comment: 11 pages, no figure

    Anaerobic digestion and Co-digestion of oleaginous Microalgae residues for biogas production

    Get PDF
    Microalgae have been suggested as one of the most promising feedstock for the production of bioenergy and biofuels, including biodiesel and aviation fuels, because of the high oil content of selected species. In the context of biofuel production from microalgae, anaerobic digestion of microalgal biomass residues after oil extraction has the potential to make the process more sustainable and increase the energy efficiency. The main goal of this study was to assess microalgae residues as substrates for anaerobic digestion and investigate their potential for biomethane production. Biochemical Methane Potential (BMP) tests were carried out on a microalgal species, Nannochloropsis gaditana, selected for its high oil content and fast growth rate. The methane potentials observed for the microalgae residue after lipid extraction were higher than those recorded for the raw microalgae samples. Co-digestion with cellulose did not clearly enhance the anaerobic digestion performances

    Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance

    No full text
    Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance

    Endoperoxide carbonyl falcipain 2/3 inhibitor hybrids: toward combination chemotherapy of malaria through a single chemical entity

    No full text
    We extend our approach of combination chemotherapy through a single prodrug entity (O’Neill et al. Angew. Chem., Int. Ed. 2004, 43, 4193) by using a 1,2,4-trioxolane as a protease inhibitor carbonylmasking group. These molecules are designed to target the malaria parasite through two independent mechanisms of action: iron(II) decomposition releases the carbonyl protease inhibitor and potentially cytotoxic C-radical species in tandem. Using a proposed target “heme”, we also demonstrate heme alkylation/carbonyl inhibitor release and quantitatively measure endoperoxide turnover in parasitized red blood cells
    corecore