85 research outputs found

    Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean

    Get PDF
    Seagrass ecosystems rank amongst the most efficient natural carbon sinks on earth, sequestering CO2 through photosynthesis and storing organic carbon (Corg) underneath their soils for millennia and thereby, mitigating climate change. However, estimates of Corg stocks and accumulation rates in seagrass meadows (blue carbon) are restricted to few regions, and further information on spatial variability is required to derive robust global estimates. Here we studied soil Corg stocks and accumulation rates in seagrass meadows across the Colombian Caribbean. We estimated that Thalassia testudinum meadows store 241 ± 118 Mg Corg ha−1 (mean ± SD) in the top 1 m-thick soils, accumulated at rates of 122 ± 62 and 15 ± 7 g Corg m−2 year−1 over the last ~ 70 years and up to 2000 years, respectively. The tropical climate of the Caribbean Sea and associated sediment run-off, together with the relatively high primary production of T. testudinum, influencing biotic and abiotic drivers of Corg storage linked to seagrass and soil respiration rates, explains their relatively high Corg stocks and accumulation rates when compared to other meadows globally. Differences in soil Corg storage among Colombian Caribbean regions are largely linked to differences in the relative contribution of Corg sources to the soil Corg pool (seagrass, algae Halimeda tuna, mangrove and seston) and the content of soil particles \u3c 0.016 mm binding Corg and enhancing its preservation. Despite the moderate areal extent of T. testudinum in the Colombian Caribbean (661 km2), it sequesters around 0.3 Tg CO2 year−1, which is equivalent to ~ 0.4% of CO2 emissions from fossil fuels in Colombia. This study adds data from a new region to a growing dataset on seagrass blue carbon and further explores differences in meadow Corg storage based on biotic and abiotic environmental factors, while providing the basis for the implementation of seagrass blue carbon strategies in Colombia

    Prefoldins contribute to maintaining the levels of the spliceosome LSM2–8 complex through Hsp90 in Arabidopsis

    Get PDF
    Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2–8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2–8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2–8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.Fil: Esteve Bruna, David. Universidad Politécnica de Valencia; EspañaFil: Carrasco López, Cristian. Consejo Superior de Investigaciones Científicas; EspañaFil: Blanco Touriñán, Noel. Universidad Politécnica de Valencia; EspañaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Calleja Cabrera, Julián. Universidad Politécnica de Valencia; EspañaFil: Perea Resa, Carlos. Consejo Superior de Investigaciones Científicas; EspañaFil: Úrbez, Cristina. Universidad Politécnica de Valencia; EspañaFil: Carrasco, Pedro. Universidad Politécnica de Valencia; EspañaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Blázquez, Miguel A.. Universidad Politécnica de Valencia; EspañaFil: Salinas, Julio. Consejo Superior de Investigaciones Científicas; EspañaFil: Alabadí, David. Universidad Politécnica de Valencia; Españ

    Quantitative analysis of soft-bottom molluscs in the Bellingshausen Sea and around Peter I Island

    Get PDF
    Macrobenthic soft-bottom molluscs were sampled in 30 stations located in the Bellingshausen Sea at depths ranging from 90 to 3304 m. The samples were collected using a quantitative grab box-corer during the cruises BENTART 03, from 24 January to 3 March 2003, and BENTART 06, from 2 January to 16 February 2006. Molluscs represent 1074 specimens belonging to 62 species of Polyplacophora, Gastropoda, Bivalvia and Scaphopoda. The bivalve Cyamiocardium denticulatum was the most abundant species (448 specimens). The abundance per station varied between 1 and 446 specimens. The Shannon–Wiener diversity index ranged between one specimen and 2.36, the Pielou evenness index ranged between 0.00 and 1 and species richness ranged from 1 to 14 species. Diversity showed great variations at different stations. After multivariate analysis (cluster analysis and nonmetrical multidimensional scaling) based on Bray–Curtis similarities, we were able to separate two principal clusters. The first cluster groups together species from shallower bottoms near Peter I Island and the Antarctic Peninsula, and the second cluster groups together species from deeper bottoms in the Bellingshausen Sea. The combination of environmental variables with the highest correlations with faunistic data was that of depth and coarse sand at the surface.Publicado

    Wireless transmission of biosignals for hyperbaric chamber applications

    Full text link
    [EN] This paper presents a wireless system to send biosignals outside a hyperbaric chamber avoiding wires going through the chamber walls. Hyperbaric chambers are becoming more and more common due to new indications of hyperbaric oxygen treatments. Metallic walls physically isolate patients inside the chamber, where getting a patient's vital signs turns into a painstaking task. The paper proposes using a ZigBee-based network to wirelessly transmit the patient's biosignals to the outside of the chamber. In particular, a wearable battery supported device has been designed, implemented and tested. Although the implementation has been conducted to transmit the electrocardiography signal, the device can be easily adapted to consider other biosignals.The authors would like to thanks the University of Balearic Islands (UIB), the Miguel Hernandez University (UMH), MEDIBAROX unit of the Perpetuo Socorro Hospital and the "Catedra de Medicina Hiperbarica" (UMH) for their support allowing the use of its facilities for this work. The authors would also like to thank Borja Mas Boned for his help designing the LabVIEW application. This research has been carried out with funding and promotion of "Catedra de Medicina Hiperbarica" of the Miguel Hernandez University. http://nbio.umh.es/es/2010/12/01/catedra-de-medicina-hiperbarica-medibarox/.Perez-Vidal, C.; Gracia Calandin, LI.; Carmona, C.; Alorda, B.; Salinas, A. (2017). Wireless transmission of biosignals for hyperbaric chamber applications. PLoS ONE. 12(3):1-19. https://doi.org/10.1371/journal.pone.0172768S119123Sureda, A., Batle, J. M., Martorell, M., Capó, X., Tejada, S., Tur, J. A., & Pons, A. (2016). Antioxidant Response of Chronic Wounds to Hyperbaric Oxygen Therapy. PLOS ONE, 11(9), e0163371. doi:10.1371/journal.pone.0163371Branco, B. H. M., Fukuda, D. H., Andreato, L. V., Santos, J. F. da S., Esteves, J. V. D. C., & Franchini, E. (2016). The Effects of Hyperbaric Oxygen Therapy on Post-Training Recovery in Jiu-Jitsu Athletes. PLOS ONE, 11(3), e0150517. doi:10.1371/journal.pone.0150517Xu, Y., Ji, R., Wei, R., Yin, B., He, F., & Luo, B. (2016). The Efficacy of Hyperbaric Oxygen Therapy on Middle Cerebral Artery Occlusion in Animal Studies: A Meta-Analysis. PLOS ONE, 11(2), e0148324. doi:10.1371/journal.pone.0148324Lin, B.-S., Lin, B.-S., Chou, N.-K., Chong, F.-C., & Chen, S.-J. (2006). RTWPMS: A Real-Time Wireless Physiological Monitoring System. IEEE Transactions on Information Technology in Biomedicine, 10(4), 647-656. doi:10.1109/titb.2006.874194Hu, S., Wei, H., Chen, Y., & Tan, J. (2012). A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks. Sensors, 12(9), 12844-12869. doi:10.3390/s120912844Burns, A., Greene, B. R., McGrath, M. J., O’Shea, T. J., Kuris, B., Ayer, S. M., … Cionca, V. (2010). SHIMMER™ – A Wireless Sensor Platform for Noninvasive Biomedical Research. IEEE Sensors Journal, 10(9), 1527-1534. doi:10.1109/jsen.2010.2045498Gil, Y., Wu, W., & Lee, J. (2012). A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation. Sensors, 12(8), 10381-10394. doi:10.3390/s120810381Chin-Teng Lin, Kuan-Cheng Chang, Chun-Ling Lin, Chia-Cheng Chiang, Shao-Wei Lu, Shih-Sheng Chang, … Li-Wei Ko. (2010). An Intelligent Telecardiology System Using a Wearable and Wireless ECG to Detect Atrial Fibrillation. IEEE Transactions on Information Technology in Biomedicine, 14(3), 726-733. doi:10.1109/titb.2010.2047401W. Y. Chung, Y. D. Lee, and S. J. Jung, 'A Wireless Sensor Network Compatible Wearable U-Healthcare Monitoring System Using Integrated Ecg, Accelerometer and Spo2', Conf Proc IEEE Eng Med Biol Soc, 2008 (2008), 1529–32.ZigBee Alliance; http://www.zigbee.org/Mahmood, A., Javaid, N., & Razzaq, S. (2015). A review of wireless communications for smart grid. Renewable and Sustainable Energy Reviews, 41, 248-260. doi:10.1016/j.rser.2014.08.036J.S. Lee, Y.W. Su, and C.C. Shen, "A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), 2007, pp. 46–51.P.P. Parikh, M.G. Kanabar, and T.S. Sidhu, "Opportunities and challenges of wireless communication technologies for smart grid applications, IEEE PES General Meeting, 2010, pp. 1–7.Fadlullah, Z. M., Fouda, M. M., Kato, N., Takeuchi, A., Iwasaki, N., & Nozaki, Y. (2011). Toward intelligent machine-to-machine communications in smart grid. IEEE Communications Magazine, 49(4), 60-65. doi:10.1109/mcom.2011.5741147A.C. Olteanu, G.D. Oprina, N. Tapus, and S. Zeisberg, "Enabling mobile devices for home automation using ZigBee, 19th IEEE International Conference on Control Systems and Computer Science, 2013, pp. 189–195.Shang, Y. (2014). Vulnerability of networks: Fractional percolation on random graphs. Physical Review E, 89(1). doi:10.1103/physreve.89.012813R. Barea-Navarro. Biomedical Instrumentation. Chapter 3. University of Alcala

    Global dataset on seagrass meadow structure, biomass and production

    Get PDF
    Seagrass meadows provide valuable socio-ecological ecosystem services, including a key role in climate change mitigation and adaption. Understanding the natural history of seagrass meadows across environmental gradients is crucial to deciphering the role of seagrasses in the global ocean. In this data collation, spatial and temporal patterns in seagrass meadow structure, biomass and production data are presented as a function of biotic and abiotic habitat characteristics. The biological traits compiled include measures of meadow structure (e.g. percent cover and shoot density), biomass (e.g. above-ground biomass) and production (e.g. shoot production). Categorical factors include bioregion, geotype (coastal or estuarine), genera and year of sampling. This dataset contains data extracted from peer-reviewed publications published between 1975 and 2020 based on a Web of Science search and includes 11 data variables across 12 seagrass genera. The dataset excludes data from mesocosm and field experiments, contains 14271 data points extracted from 390 publications and is publicly available on the PANGAEA® data repository (10.1594/PANGAEA.929968; Strydom et al., 2021). The top five most studied genera are Zostera, Thalassia, Cymodocea, Halodule and Halophila (84 % of data), and the least studied genera are Phyllospadix, Amphibolis and Thalassodendron (2.3 % of data). The data hotspot bioregion is the Tropical Indo-Pacific (25 % of data) followed by the Tropical Atlantic (21 %), whereas data for the other four bioregions are evenly spread (ranging between 13 and 15 % of total data within each bioregion). From the data compiled, 57 % related to seagrass biomass and 33 % to seagrass structure, while the least number of data were related to seagrass production (11 % of data). This data collation can inform several research fields beyond seagrass ecology, such as the development of nature-based solutions for climate change mitigation, which include readership interested in blue carbon, engineering, fisheries, global change, conservation and policy

    Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies

    Get PDF
    Este artículo contiene 15 páginas, 6 figuras, 1 tabla.Seagrass meadows rank among the most significant organic carbon (Corg) sinks on earth. We examined the variability in seagrass soil Corg stocks and composition across Australia and identified the main drivers of variability, applying a spatially hierarchical approach that incorporates bioregions and geomorphic settings. Top 30 cm soil Corg stocks were similar across bioregions and geomorphic settings (min-max: 20–26 Mg Corg ha−1), but meadows formed by large species (i.e., Amphibolis spp. and Posidonia spp.) showed higher stocks (24–29 Mg Corg ha−1) than those formed by smaller species (e.g., Halodule, Halophila, Ruppia, Zostera, Cymodocea, and Syringodium; 12–21 Mg Corg ha−1). In temperate coastal meadows dominated by large species, soil Corg stocks mainly derived from seagrass Corg (72 ± 2%), while allochthonous Corg dominated soil Corg stocks in meadows formed by small species in temperate and tropical estuarine meadows (64 ± 5%). In temperate coastal meadows, soil Corg stocks were enhanced by low hydrodynamic exposure associated with high mud and seagrass Corg contents. In temperate estuarine meadows, soil Corg stocks were enhanced by high contributions of seagrass Corg, low to moderate solar radiation, and low human pressure. In tropical estuarine meadows formed by small species, large soil Corg stocks were mainly associated with low hydrodynamic energy, low rainfall, and high solar radiation. These results showcase that bioregion and geomorphic setting are not necessarily good predictors of soil Corg stocks and that site-specific estimates based on local environmental factors are needed for Blue Carbon projects and greenhouse gases accounting purposes.This study was delivered as part of the Pilot Projects program of the Land Restoration Fund, supported by the Queensland Government, Deakin University, The University of Queensland, James Cook University, CSIRO, HSBC, Qantas, Australian Government Department of Industry, Science, Energy and Resources, NQ Dry Tropics, Great Barrier Reef Foundation and Greencollar. We are thankful for the funding provided by Deakin University (to PIM and MDPC), Qantas (to PIM and MDPC) and HSBC (to PIM and MDPC). MR, PY, PIM were supported through ARC Linkage grant LP160100492, and PIM and CEL were supported through ARC Linkage grant LP160100242. NJW is funded through Australian Government National Environment Science Program (Tropical Water Quality Hub). MFA was funded through an Advance Queensland Industry Research Fellowship, Queensland Government. CS was funded by ECU Higher Degree by Research ScholarshipPeer reviewe

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    © 2019, The Author(s). Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO emissions from current VCE losses are estimated at 2.1-3.1 Tg CO-e yr, increasing annual CO emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions
    corecore