32 research outputs found

    Synthesis and pharmacological evaluation of novel non-nucleotide purine derivatives as P2X7 antagonists for the treatment of neuroinflammation

    Full text link
    The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1β release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizationsThis work has been supported by the following grants: EU Horizon 2020 Research and Innovation Program under Marie Skłodowska-Curie, Grant Agreement N. 766124 to AGG and AN, and Ministerio de Economía y Competitividad, Spain, Grant Number SAF2016-78892R to AGG; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID: 335447717, SFB 1328 (TP15) to A.N.; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain, Grant Numbers PI16/01041 and PI19/01724 (Cofunded by FEDER) to CdlR; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain, Grant Numbers PI16/00735 and PI19/00082 (Co-funded by FEDER) to J.E

    The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.The authors would like to acknowledge the support received from the EU Horizon 2020 Research and Innovation Program under Maria Sklodowska‐Curie (Grant Agreement No. 766124). The authors would also like to thank the support received from the Ministerio de Economía y Competitividad (MINECO, Spain; Grant No. SAF2016‐78892R to Luis Gandía and Antonio G. García) and Fundación Teófilo Hernando

    Therapeutic concentrations of varenicline increases exocytotic release of catecholamines from human and rat adrenal chromaffin cells in the presence of nicotine

    Full text link
    Cardiovascular side effects of varenicline and a case report of a hypertensive crisis in a varenicline-prescribed patient with pheochromocytoma have been reported. The goal of the present study was to determine whether such side effects might derive, in part, from increased exocytosis of secretory vesicles and subsequent catecholamine release triggered by varenicline in human chromaffin cells of the adrenal gland. In this study, we performed electrophysiological plasma membrane capacitance and carbon fiber amperometry experiments to evaluate the effect of varenicline on exocytosis and catecholamine release, respectively, at concentrations reached during varenicline therapy (100 nM). Experiments were conducted in the absence or presence of nicotine, at plasma concentrations achieved right after smoking (250 nM) or steady-state concentrations (110 nM), in chromaffin cells of the adrenal gland obtained from human organ donors. Cells were stimulated with short pulses (10 ms) of acetylcholine (ACh; 300 μM) applied at 0.2 Hz, in order to closer mimic the physiological situation at the splanchnic nerve-chromaffin cell synapse. In addition, rat chromaffin cells were used to compare the effects obtained in cells from a more readily available species. Varenicline increased the exocytosis of secretory vesicles in human and rat chromaffin cells in the presence of nicotine, effects that were not due to an increase of plasma membrane capacitance or currents triggered by the nicotinic agonists alone. These results should be considered in nicotine addiction therapies when varenicline is usedThis work was supported by grants from the Spanish Ministry of Science and Innovation [grant number BFU2015-69092 to A.A.] and the U.S. National Institutes of Health [GM136430 and GM103801 to J.M.M

    Gramine derivatives targeting Ca2+ channels and Ser/Thr phosphatases: A new dual strategy for the treatment of neurodegenerative diseases

    Full text link
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Medicinal Chemistry , copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00478We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer’s disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca2+ channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In general, these compounds reduced the entry of Ca2+ through VGCC, as measured by Fluo-4/AM and patch clamp techniques, and protected in Ca2+ overload-induced models of neurotoxicity, like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this multitarget approach as a new and promising strategy for the treatment of neurodegenerative diseasesThis work was supported by the following grant: Proyectos de Investigación en Salud (PI13/00789, IS Carlos III). R.L.C is granted by Universidad Autónoma de Madri

    Analysis of gene expression profiles of CR80, a neuroprotective 1,8-Naphthyridine

    No full text
    The 1,8-naphthyridine CR80 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b] [1,8]naphthyridine-3-carboxylate) has shown interesting neuroprotective properties in in vitro and in vivo models of neurodegeneration. In spite of these promising outcomes, the molecular and cellular mechanisms underlying CR80 actions need to be further explored. Materials & methods: We herein report the signal transduction pathways involved in developmental, neuroprotective and stress-activated processes, as well as the gene expression regulation by CR80 in SH-SY5Y neuroblastoma cells. Results: The CR80 exposure upregulated several antioxidant enzymes (HO-1, GSR, SQSTM1, and TRXR1) and anti-apoptotic proteins (Bcl-xL, Bcl-2, P21, and Wnt6). Conclusion: The observed changes in gene expression would afford new insights on the neuroprotective profile of CR80.Peer Reviewe

    Novel Purine Derivative ITH15004 Facilitates Exocytosis through a Mitochondrial Calcium-Mediated Mechanism

    No full text
    Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells

    Toxicology of blister agents: is melatonin a potential therapeutic option?

    Get PDF
    Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.Universidad Camilo José Cela | Ref. QUIMELTERMinisterio de Defensa | Ref. MELVE

    Promising Molecular Targets in Pharmacological Therapy for Neuronal Damage in Brain Injury

    No full text
    The complex etiopathogenesis of brain injury associated with neurodegeneration has sparked a lot of studies in the last century. These clinical situations are incurable, and the currently available therapies merely act on symptoms or slow down the course of the diseases. Effective methods are being sought with an intent to modify the disease, directly acting on the properly studied targets, as well as to contribute to the development of effective therapeutic strategies, opening the possibility of refocusing on drug development for disease management. In this sense, this review discusses the available evidence for mitochondrial dysfunction induced by Ca2+ miscommunication in neurons, as well as how targeting phosphorylation events may be used to modulate protein phosphatase 2A (PP2A) activity in the treatment of neuronal damage. Ca2+ tends to be the catalyst for mitochondrial dysfunction, contributing to the synaptic deficiency seen in brain injury. Additionally, emerging data have shown that PP2A-activating drugs (PADs) suppress inflammatory responses by inhibiting different signaling pathways, indicating that PADs may be beneficial for the management of neuronal damage. In addition, a few bioactive compounds have also triggered the activation of PP2A-targeted drugs for this treatment, and clinical studies will help in the authentication of these compounds. If the safety profiles of PADs are proven to be satisfactory, there is a case to be made for starting clinical studies in the setting of neurological diseases as quickly as possible
    corecore