31 research outputs found

    Explicit Motor Imagery for Grasping Actions in Children With Spastic Unilateral Cerebral Palsy

    Get PDF
    Background: Motor Imagery (MI) refers to mental simulation of a motor action without producing any overt movement. Previous studies showed that children with Unilateral Cerebral Palsy (UCP) are impaired in implicit MI, as demonstrated by the performance of Hand Laterality Judgment tasks. The aim of this study was to examine the specificity of explicit MI deficits in UCP children.Methods: A group of UCP children (n = 10; aged 9-14) performed a mental chronometry task consisting in grasping an object and placing it into a container, or in imagining to perform the same action. As control, a group of typically developing (TD) children, matched by age, performed the same task. Movement durations for executed and imagined trials were recorded. A subgroup of 7 UCP children and 10 TD children also underwent a session of functional MRI to examine the activation of parieto-frontal areas typically associated to MI processes, during the imagination of reaching-grasping actions performed with the paretic hand.Results: Behavioral results revealed the existence of a correlation between executed and imaginedmovement durations both in TD and UCP groups. Moreover, the regression analysis in TD children showed that higher scores in mental chronometry tasks were positively correlated to increased bilateral activation of the intraparietal sulcus (IPS), superior parietal lobule (SPL), and dorsal premotor (PMd) cortex. A similar analysis revealed in the UCP group a positive correlation between a higher score in the mental chronometry task and bilateral activations of IPS, and to activation of contralesional, right PMd, and putamen during imagination of grasping movements.Conclusions: These results provide new insights on the relationship between MI capacity and motor deficits in UCP children, suggesting the possibility of the use of explicit MI training to improve patient's upper limb motor functions

    Visual claudicatio: Diagnosis with 64-slice computed tomography

    Get PDF
    We present a case of a 78-year-old male referred presented to our institution with amaurosis fugax after walking 20 steps ("visual claudicatio"). Duplex ultrasound was not able to visualize the carotid arteries. Multislice computed tomography (Sensation 64 Cardiac, Siemens, Germany) of the cerebro-vascular circulation was performed from its origin at the level of the aortic arch to the circle of Willis. The investigation demonstrated a complete occlusion of both common carotid arteries at their origin and a severe origo stenosis of both vertebral arteries. An important collateral circulation of the vertebral arteries through the minor vessels of the neck was also displayed. Both comunicans posterior arteries were small but patent. The intra-cranial arteries were patent. Multislice CT of the cerebro-vascular circulation is an optimal tool for a comprehensive evaluation when duplex ultrasound fails

    Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study

    Full text link
    This is the peer reviewed version of the following article: del Mar Álvarez-Torres, M., Juan-Albarracín, J., Fuster-Garcia, E., Bellvís-Bataller, F., Lorente, D., Reynés, G., Font de Mora, J., Aparici-Robles, F., Botella, C., Muñoz-Langa, J., Faubel, R., Asensio-Cuesta, S., García-Ferrando, G.A., Chelebian, E., Auger, C., Pineda, J., Rovira, A., Oleaga, L., Mollà-Olmos, E., Revert, A.J., Tshibanda, L., Crisi, G., Emblem, K.E., Martin, D., Due-Tønnessen, P., Meling, T.R., Filice, S., Sáez, C. and García-Gómez, J.M. (2020), Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study. J Magn Reson Imaging, 51: 1478-1486, which has been published in final form at https://doi.org/10.1002/jmri.26958. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Background Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). Purpose To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. Study Type Multicenter retrospective study. Population In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study. Field Strength/Sequence 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T-1-weighted MRI, T-2- and FLAIR T-2-weighted, and dynamic susceptibility contrast (DSC) T-2* perfusion. Assessment We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBV(max)) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed. Statistical Tests Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test. Results The rCBV(max) derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000). Data Conclusion The rCBV(max) calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability. Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019.This work was partially supported by: MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R) (to J.M.G.G.); H2020-SC1-2016-CNECT Project (No. 727560) (to J.M.G.G.) and H2020-SC1-BHC-2018-2020 (No. 825750) (to J.M.G.G.); M.A.T was supported by DPI2016-80054-R (Programa Estatal de Promocion del Talento y su Empleabilidad en I + D + i). The data acquisition and curation of the Oslo University Hospital was supported by: the European Research Council (ERC) under the European Union's Horizon 2020 (Grant Agreement No. 758657), the South-Eastern Norway Regional Health Authority Grants 2017073 and 2013069, and the Research Council of Norway Grants 261984 (to K.E.E.). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. E.F.G. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 844646. Figure 1 was designed by the Science Artist Elena Poritskaya.Álvarez-Torres, MDM.; Juan-Albarracín, J.; Fuster García, E.; Bellvís-Bataller, F.; Lorente, D.; Reynés, G.; Font De Mora, J.... (2020). Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study. Journal of Magnetic Resonance Imaging. 51(5):1478-1486. https://doi.org/10.1002/jmri.2695814781486515Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1Gately, L., McLachlan, S., Dowling, A., & Philip, J. (2017). Life beyond a diagnosis of glioblastoma: a systematic review of the literature. Journal of Cancer Survivorship, 11(4), 447-452. doi:10.1007/s11764-017-0602-7Bae, S., Choi, Y. S., Ahn, S. S., Chang, J. H., Kang, S.-G., Kim, E. H., … Lee, S.-K. (2018). Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology, 289(3), 797-806. doi:10.1148/radiol.2018180200Akbari, H., Macyszyn, L., Da, X., Wolf, R. L., Bilello, M., Verma, R., … Davatzikos, C. (2014). Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity. Radiology, 273(2), 502-510. doi:10.1148/radiol.14132458Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359-1370. doi:10.1038/nm.2537De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457-474. doi:10.1038/nrc.2017.51Jain, R., Poisson, L. M., Gutman, D., Scarpace, L., Hwang, S. N., Holder, C. A., … Flanders, A. (2014). Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor. Radiology, 272(2), 484-493. doi:10.1148/radiol.14131691Jensen, R. L., Mumert, M. L., Gillespie, D. L., Kinney, A. Y., Schabel, M. C., & Salzman, K. L. (2013). Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro-Oncology, 16(2), 280-291. doi:10.1093/neuonc/not148Jena, A., Taneja, S., Gambhir, A., Mishra, A. K., D’souza, M. M., Verma, S. M., … Sogani, S. K. (2016). Glioma Recurrence Versus Radiation Necrosis. Clinical Nuclear Medicine, 41(5), e228-e236. doi:10.1097/rlu.0000000000001152Price, S. J., Young, A. M. H., Scotton, W. J., Ching, J., Mohsen, L. A., Boonzaier, N. R., … Larkin, T. J. (2015). Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. Journal of Magnetic Resonance Imaging, 43(2), 487-494. doi:10.1002/jmri.24996Chang, Y.-C. C., Ackerstaff, E., Tschudi, Y., Jimenez, B., Foltz, W., Fisher, C., … Stoyanova, R. (2017). Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI. Scientific Reports, 7(1). doi:10.1038/s41598-017-09932-5Cui, Y., Tha, K. K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., … Li, R. (2016). Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology, 278(2), 546-553. doi:10.1148/radiol.2015150358Juan-Albarracín, J., Fuster-Garcia, E., Pérez-Girbés, A., Aparici-Robles, F., Alberich-Bayarri, Á., Revert-Ventura, A., … García-Gómez, J. M. (2018). Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. Radiology, 287(3), 944-954. doi:10.1148/radiol.2017170845Fuster-Garcia, E., Juan-Albarracín, J., García-Ferrando, G. A., Martí-Bonmatí, L., Aparici-Robles, F., & García-Gómez, J. M. (2018). Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures. NMR in Biomedicine, 31(12), e4006. doi:10.1002/nbm.4006Abramson, R. G., Burton, K. R., Yu, J.-P. J., Scalzetti, E. M., Yankeelov, T. E., Rosenkrantz, A. B., … Subramaniam, R. M. (2015). Methods and Challenges in Quantitative Imaging Biomarker Development. Academic Radiology, 22(1), 25-32. doi:10.1016/j.acra.2014.09.001Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330Wetzel, S. G., Cha, S., Johnson, G., Lee, P., Law, M., Kasow, D. L., … Xue, X. (2002). Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study. Radiology, 224(3), 797-803. doi:10.1148/radiol.2243011014Schnack, H. G., van Haren, N. E. M., Hulshoff Pol, H. E., Picchioni, M., Weisbrod, M., Sauer, H., … Kahn, R. S. (2004). Reliability of brain volumes from multicenter MRI acquisition: A calibration study. Human Brain Mapping, 22(4), 312-320. doi:10.1002/hbm.20040De Guio, F., Jouvent, E., Biessels, G. J., Black, S. E., Brayne, C., Chen, C., … Chabriat, H. (2016). Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow & Metabolism, 36(8), 1319-1337. doi:10.1177/0271678x16647396Hirai, T., Murakami, R., Nakamura, H., Kitajima, M., Fukuoka, H., Sasao, A., … Yamashita, Y. (2008). Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up Study. American Journal of Neuroradiology, 29(8), 1505-1510. doi:10.3174/ajnr.a1121Sawlani, R. N., Raizer, J., Horowitz, S. W., Shin, W., Grimm, S. A., Chandler, J. P., … Carroll, T. J. (2010). Glioblastoma: A Method for Predicting Response to Antiangiogenic Chemotherapy by Using MR Perfusion Imaging—Pilot Study. Radiology, 255(2), 622-628. doi:10.1148/radiol.10091341Hambardzumyan, D., & Bergers, G. (2015). Glioblastoma: Defining Tumor Niches. Trends in Cancer, 1(4), 252-265. doi:10.1016/j.trecan.2015.10.009Artzi, M., Bokstein, F., Blumenthal, D. T., Aizenstein, O., Liberman, G., Corn, B. W., & Ben Bashat, D. (2014). Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: A longitudinal MRI study. European Journal of Radiology, 83(7), 1250-1256. doi:10.1016/j.ejrad.2014.03.02

    Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center?

    Get PDF
    BACKGROUND: As yet, no population-based prospective studies have been conducted to investigate the incidence and clinical outcome of glioblastoma (GBM) or the diffusion and impact of the current standard therapeutic approach in newly diagnosed patients younger than aged 70 years. METHODS: Data on all new cases of primary brain tumors observed from January 1, 2009, to December 31, 2010, in adults residing within the Emilia-Romagna region were recorded in a prospective registry in the Project of Emilia Romagna on Neuro-Oncology (PERNO). Based on the data from this registry, a prospective evaluation was made of the treatment efficacy and outcome in GBM patients. RESULTS: Two hundred sixty-seven GBM patients (median age, 64 y; range, 29-84 y) were enrolled. The median overall survival (OS) was 10.7 months (95% CI, 9.2-12.4). The 139 patients 64aged 70 years who were given standard temozolomide treatment concomitant with and adjuvant to radiotherapy had a median OS of 16.4 months (95% CI, 14.0-18.5). With multivariate analysis, OS correlated significantly with KPS (HR = 0.458; 95% CI, 0.248-0.847; P = .0127), MGMT methylation status (HR = 0.612; 95% CI, 0.388-0.966; P = .0350), and treatment received in a high versus low-volume center (HR = 0.56; 95% CI, 0.328-0.986; P = .0446). CONCLUSIONS: The median OS following standard temozolomide treatment concurrent with and adjuvant to radiotherapy given to (72.8% of) patients aged 6470 years is consistent with findings reported from randomized phase III trials. The volume and expertise of the treatment center should be further investigated as a prognostic factor

    AMBIGUOUS MR FINDINGS IN GLIOBLASTOMA REVISION OF 4 CASES FOCUSING ON DIFFUSION WEIGHTED IMAGING.

    No full text
    We collect 4 patients with glioblastoma showing unclear clinical presen- tation and ambiguous MRI findings; careful revision of follow-up imag- ing suggested DWI changes as the more specific tool to predict the pres- ence of underlying tumor tissue. Methods retrospective MR imaging review of 4 patients with biopsy proven diag- nosis of glioblastoma. All patients accessed Emergency Department with secondary generalized seizures. MRI examinations were performed in acute setting with different clinical orientation: ischemia, status epilepticus and encephalitis. Follow-up was scheduled after 1 month (4/ 4) and after 3 months (3/4). All MRI protocols include T2w FLAIR, DWI and post-contrast T1w images. Results&amp;Discussion Although all glioblastomas demonstrate changes on T2 FLAIR and DW imaging before presenting rim enhancing core, DWI is more specific to predict the center core of the tumor. In each case glioblastoma apparently develops from non enhancing DWI hyperintense areas; these areas do not correspond to an evident restriction on ADC map, even if diffusivity is reduced compared to previous MR imaging and to the perilesional tissue. Actually, ADC values correlate inversely to cellular proliferation in spec- imen and in vivo acquisition; DWI changes is a powerful tool to identify proliferating tumor cells regardless of ischemic changes due to tumor neoangiogenesis. Conclusion In our experience non enhancing hyperintense areas on DWI could pre- dict the site of tumor core; DWI changes should be carefully evaluated and reported when considering unclear clinical cases with ambiguous MR findings

    Correlation between cortical lesions and cognitive impairment in multiple sclerosis

    No full text
    Objectives: Gray matter (GM) damage is well known as a fundamental aspect of multiple sclerosis (MS). Above all, cortical lesions (CLs) burden, detectable at MRI with double inversion recovery (DIR) sequences, has been demonstrated to correlate with cognitive impairment (CI). The aim of this study was to investigate the role of CLs number in predicting CI in a cohort of patients with MS in a clinical practice setting. Materials and methods: Thirty consecutive patients with MS presenting CLs (CL+) at high-field (3.0 T) MRI 3D-DIR sequences and an even group of MS patients without CLs (CL-) as a control, were investigated with the Rao Brief Repeatable Battery of Neuropsychological Tests (BRB), Version A. Total and lobar CLs number were computed in CL+ patients. Results: Among the sixty patients with MS enrolled, forty-seven (78.3%) had a relapsing-remitting course, while thirteen (21.7%) a progressive one, eleven secondary progressive, and two primary progressive. Compared to CL−, CL+ patients had a greater proportion of progressive forms (p =.03). The most affected region was the frontal lobe (73.3% of patients), followed by temporal and parietal ones (both 60.0%). Multivariate (logistic regression) analysis revealed a significant correlation between total CLs number and the presence of mild cognitive impairment defined as pathologic score in at least one BRB test (p =.04); it was also correlated with deficit at PASAT 3 (p =.05) and Stroop Test (p =.02). Conclusions: We confirmed CLs number, evaluated with a technique quite commonly available in clinical practice, as a predictive factor of CI in patients with MS, in order to improve the diagnosis and management of CI and monitor potential neuroprotective effects of therapies

    2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T

    No full text
    The objective of this study was to assess the effective performance of short echo time magnetic resonance spectroscopy (short TE MRS) for 2HG detection as biomarker of isocitrate dehydrogenase (IDH) status in all grade glioma (GL)

    Visuospatial memory and neuroimaging correlates in mild cognitive impairment

    No full text
    Abstract. Spatial abilities decline in normal aging and decrease faster and earlier in Alzheimer\u2019s disease (AD), but these deficits are under investigated. The main goals of this study were to assess visuospatial memory abilities in mild cognitive impairment (MCI), in order to verify whether these tasks might be valid as the standard cognitive test to differentiate MCI individuals from normal controls and to investigate the brain structural correlates of visuospatial deficits. Twenty MCI patients and fourteen healthy elderly controls underwent an experimental visuospatial battery, which also included self-rating spatial questionnaires, and structural MRI brain imaging. Compared to healthy elderly controls, MCI patients scored significantly worse in almost all visuospatial tasks. ROC analysis showed that visuospatial tasks had an elevated discriminant power between groups (AUC >0.90). Voxel-based morphometry analysis, compared to controls, disclosed a higher level of atrophy in frontal and mediotemporal regions and a different pattern of correlation between grey matter values and visuospatial performance, with wider distributed areas of the occipital and middle temporal cortex in the map and route learning. This study indicates that visuospatial memory tests are valid tools in completing the diagnostic evaluation of MCI

    Tapia's syndrome secondary to laterocervical localization of diffuse large cell lymphoma

    No full text
    The eponym "Tapia's syndrome" indicates an associated unilateral vocal cord and tongue paralysis secondary to a peripheral involvement of the recurrent laryngeal branch and the hypoglossal nerve. Although mainly observed as a complication of surgery or anaesthesia, it can rarely occur secondary to infectious or neoplastic causes. We are presenting a case of a teen-ager with Tapia's syndrome who had been seeking medical assistance for episodes of loss of consciousness and was diagnosed with a high-grade peripheral B-cell lymphoma, an association not previously described. This syndrome should be remembered even outside the surgical contest for its highly localising value
    corecore