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Background: Motor Imagery (MI) refers to mental simulation of a motor action without

producing any overt movement. Previous studies showed that children with Unilateral

Cerebral Palsy (UCP) are impaired in implicit MI, as demonstrated by the performance of

Hand Laterality Judgment tasks. The aim of this study was to examine the specificity of

explicit MI deficits in UCP children.

Methods: A group of UCP children (n = 10; aged 9–14) performed a mental

chronometry task consisting in grasping an object and placing it into a container, or

in imagining to perform the same action. As control, a group of typically developing (TD)

children, matched by age, performed the same task. Movement durations for executed

and imagined trials were recorded. A subgroup of 7 UCP children and 10 TD children

also underwent a session of functional MRI to examine the activation of parieto-frontal

areas typically associated to MI processes, during the imagination of reaching-grasping

actions performed with the paretic hand.

Results: Behavioral results revealed the existence of a correlation between executed

and imaginedmovement durations both in TD and UCP groups. Moreover, the regression

analysis in TD children showed that higher scores in mental chronometry tasks were

positively correlated to increased bilateral activation of the intraparietal sulcus (IPS),

superior parietal lobule (SPL), and dorsal premotor (PMd) cortex. A similar analysis

revealed in the UCP group a positive correlation between a higher score in the mental

chronometry task and bilateral activations of IPS, and to activation of contralesional, right

PMd, and putamen during imagination of grasping movements.

Conclusions: These results provide new insights on the relationship between MI

capacity and motor deficits in UCP children, suggesting the possibility of the use of

explicit MI training to improve patient’s upper limb motor functions.
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INTRODUCTION

Cerebral palsy (CP) is a group of permanent disorders of
the development of movement and posture, causing activity
limitations, that are attributed to non-progressive disturbances
occurred in the developing fetal or infant brain (1). CP is themost
common physical disability in childhood and occurs in 1 out of
500 live births (2). Children with unilateral cerebral palsy (UCP),
in which only one side of the body is involved, represent 38% of
CP (3). UCP can be attributed to perinatal ischemic stroke or, in
premature infants, to malformations of white-matter, producing
unilateral porencephalic cavities (or cysts) (4, 5). In UCP, the
upper limb is generally more affected than the lower one (6).
About the two upper limbs, some evidence showed, by evaluating
motor dexterity and precision grip or complex reaching grasping
actions, that also the hand considered not affected has actually
some deficits (7, 8). However, unimanual activities are generally
performed by the less affected upper hand, while daily life ones,
which are prevalently bimanual, can be severely impaired (9, 10).

Several models of intervention are currently available to
improve upper limb function in UCP children, such as
intramuscular injections of botulinum toxin-A (BoNT-A),
constraint-induced movement therapy (CIMT), and intensive
hand-arm bimanual training (BIM) (11). However, in the last
decade, it has been shown that motor deficits in UCP children
are not only related to problems in overt movement execution,
but can also be associated to deficits in motor planning and
motor imagery (MI) (12). This latter consists in the internal
simulation of a movement/action without its overt execution
(13, 14). Neuroimaging evidence in humans has repeatedly
demonstrated (15–18) that sensorimotor circuits involved in
performing real movements/actions, including supplementary
motor area (SMA), dorsal and ventral premotor cortices
(PMd, PMv), inferior parietal lobule (IPL), superior parietal
lobule (SPL), prefrontal areas, cingulate cortex, and cerebellar
regions, are activated also during performance of MI of the
same movements/actions.

In recent years, the application of MI as a tool for recovery
of motor function in adult patients (19–21) and children with
motor developmental coordination disorder (DCD) (22, 23)
has suggested the possibility of using a similar rehabilitation
proposal in UCP children (24). However, accumulated evidence
has revealed that often action planning and MI can be severely
compromised in UCP patients (25, 26). Behaviorally, a common
method for testing if a patient is able to evoke MI is the Parsons’
Hand Laterality Judgment (HLJ) task (27): pictures of hands
are presented in different orientations and participants have to
provide a laterality judgment. The task is designed to test a
specific type of MI, namely implicit MI, based on the fact that
participants have to imagine rotating their own hand to match
it with the observed one. There is considerable consensus that
in the period ranging from 5 and 12 years, TD children increase
their accuracy and speed in solving this type of task (28–30).

Abbreviations: AON, Action Observation Network; CP, Cerebral Palsy; HFC,

House Functional Classification; MACS, Manual Ability Classification System; MI,

Motor Imagery; MNS, Mirror Neuron System; UCP, Unilateral Cerebral palsy.

However, recent studies (31, 32) have proposed that implicit
tasks, as the HLJ, are not the most appropriate in assessing MI
ability in UCP patients. Indeed, mental rotation by itself is not
sufficient to conclude if patients are able to evoke an effective
MI strategy. They may use alternative strategies, for instance
a visual strategy, that is the rotation of the hand imagined
from a third-person perspective, or apply an abstract rule to
make the laterality judgment. Moreover, patients with a body-
awareness deficit, as UCP ones, may be unable to produce
a kinesthetic image of motor action, but may be facilitated
by using an explicit paradigm, such as mental chronometry
(13, 33–35). Usually, in this latter paradigm, participants are
instructed to actually perform a simple movement (pointing
task) and, in a separate block, to imagine performing the same
movement. A high correspondence between actual and imagined
movement duration is taken as evidence ofMI ability (34, 36–38).
Overall, the studies employing themental chronometry paradigm
indicate that children’s ability to engage MI gradually increases
until at least 12 years of age, as demonstrated by age-related
increases in temporal congruence and compliance with Fitts’
law for the imagined task (33, 35, 39). However, the finding
of temporal congruence by itself does not allow to establish if
effective MI occurred, because participants may also have used
alternative non-motor imagery strategies or even counting to
solve the task. To address this issue, an often-used method is to
manipulate task difficulty and examine the effects on both actual
and imagined performance. For instance, studies employing
pointing tasks (28, 33, 35, 40) found a compliance with Fitts’ law
(41), according to which movement duration is logarithmically
related to task difficulty. Using this type of control, several studies
on TD children found that the linear fit in the MI task increased
with age: the 6- to 7-years-old children showed a lower fit than
10- to 16- years-old ones (33, 35).

To date, a mental chronometry paradigm has never been used
to study the relationship between execution and imagination
of grasping actions in UCP children. The aim of the present
study was to investigate the processes underlying explicit MI
ability for grasping actions in UCP children, using a combined
behavioral and neuroimaging approach. A homogeneous group
of UCP children with selected features of upper limb motor
deficits, and a group of age-matched TD participants performed
a mental chronometry task, requiring them to execute or imagine
to perform reaching-grasping actions. We hypothesized that, if
participants were able to use a motor strategy (compared to
visual strategies, counting etc.), a significant correlation between
durations of the execution and imagination tasks should be
observed. A sub-group of UCP children and a subgroup of TD
children also underwent a session of functional MRI to examine
brain activation during the performance of an explicit MI
task, consisting in imagining a reaching-grasping action similar
to the one they performed during the mental chronometry
task. The aims of this neuroimaging investigation were: (a) to
describe the activation of sensorimotor parieto-frontal areas of
UCP and TD children during the performance of a MI task;
(b) to correlate the behavioral data provided by the mental
chronometry task to specific activation patterns in parietal and
premotor regions. We hypothesized that those children with
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UCP showing higher scores in the behavioral task should have
increased activation of the above-mentioned parieto-frontal areas
during the performance of the MI fMRI task, with respect to
those with lower scores.

MATERIALS AND METHODS

Participants
Ten children with confirmed diagnosis of unilateral brain lesion
(5 males; range 9–14 years old; M= 12.3; SD= 1.88) and clinical
congenital hemiplegia (Group: UCP children; see Table 1) were
selected starting from a large sample (N > 150) of hemiplegic
children in the IRCCS S. Maria Nuova Hospital (Reggio Emilia,
Italy) database, according to the following inclusion criteria: (1)
confirmed diagnosis of UCP according to definition (MRI and
clinical history); (2) age 9–14 at time of recruitment; (3) mild
or moderate upper-limb disability, i.e., active use of affected
upper limb ranging from poor active assisted use to complete
spontaneous use, according to House Functional Classification
(HFC) system (42, 43) with grades between 4 and 5; (4) no
cognitive, visual or auditory impairments; (5) no history of
seizures or seizures well-controlled by therapy.

As control, a group of right handed (44) TD children matched
by age (n= 12; 6 males; range 9–14 years old) were recruited.

A sub-group of 7 UCP children and a sub-group of 10 TD
children, matched by age, were also involved in a functional
MRI study aimed at investigating the neural correlates of explicit
MI for grasping actions and at comparing brain activations
with the results provided by the behavioral experiment using
supplementary inclusion/exclusion criteria, namely: (1) sufficient
cooperation to perform imaging studies for 15min; (2) no
exclusions for 3-Tesla Magnetic Resonance System such as metal
implants, shunts, etc. The fact that the three participants who
did not undergo the neuroimaging investigation were all with
left hemiparesis was just due to these latter criteria, and not
purposefully planned.

The protocol was approved by the Institutional Review
Board of the University of Parma and the Ethics Committee
of University of Parma (Study ID: UNIPRMR750c1). Parental
written informed consent for all participants in accordance with
the Declaration of Helsinki was obtained.

Clinical Assessment of UCP Children
All UCP children participating in this study were able to
understand the given instructions and did not present major
cognitive deficit, as indicated by direct observation, IQ (if
available) >/= 70 assessed using the Wechsler Preschool and
Primary Scale of Intelligence–Fourth Edition [WPPSI; (45)] or
attendance of a mainstream primary school.

Motor deficits were classified according to the House
Functional Classification (HFC) system (42, 43). It was originally
developed for the evaluation of the affected hand function after
surgery for thumb-in-palm deformity in children with spastic
UCP and has been used to evaluate children before and after
upper extremity botulinum toxin-A injections (46, 47). The
classification consists of nine levels, ranging from a hand that is
not used at all (grade 0) to one that is used spontaneously and

independently from the other hand (grade 8). Furthermore, the
Manual Ability Classification System (MACS) was also used to
categorize UCP children into five levels, according to their ability
to performmanual activities in everyday life (48). Note that in the
MACS low scores correspond to higher ability.

A further classification of UCP children is based on the
description of five patterns of manipulation by analyzing hand
kinematic profile and functional use (49). On the basis of
this classification, children participating in this study use their
non-preferred upper limb by means of semi-functional or
synergic strategies:

The semi-functional hand is characterized by the presence
of a termino-lateral pinch with substantially adduced thumb.
Orientation, anticipation and pre-adaptation of the hand are
possible, but uncertain. The object can be promptly passed from
one hand to the other, but its release is rough, with frequent need
of visual control. This pattern shows, during bimanual activities,
a good cooperation between the two hands. The non-preferred
hand is used spontaneously as first only when the patient acts in
the extreme part of the hemispace ipsilateral to this hand.

The synergic hand is characterized by a stereotyped grasping
showing flexion and extension synergies and servomotor
movements in the releasing action. The object is passed with
difficulties from the non-preferred hand to the preferred one,
with necessity of visual control. Manipulation is extremely
limited. In this pattern, there can be a collaboration in bimanual
activities for achieving the same aim, with the non-preferred
hand supporting the preferred one.

Individual scores and descriptions of manipulation patterns
for the used classification systems are reported in Table 1.

Mental Chronometry Task for
Reaching-Grasping Actions
All participants performed a mental chronometry task for
reaching-grasping actions. The task was performed using a
wooden support (60 × 40 cm) with two boxes (6 × 6 × 4 cm)
positioned at different distances (D1 = 100mm, D2 = 150mm,
D3= 200mm) from a central press button (Figure 1A). Between
the two boxes, a target object was positioned, consisting of a
little plastic sphere (diameter 35mm). Subjects were seated in
front of a table with their hand resting on the starting position.
Participants were explicitly asked to perform two tasks: (a) action
execution, consisting in reaching/grasping the object, placed at
one of three different distances with their preferred or non-
preferred hand in different trials, and placing it into a container
(Figure 1B); (b)motor imagery, requiring participants to imagine
performing the same action as in (a) from a first-person
perspective (Figure 1C). The preferred hand corresponded to
the dominant hand of TD participants and to the less-affected
hand of UCP children. For the action execution task, at the
beginning of each trial, participants, verbally instructed by the
experimenter, waited for the go-signal (BEEP sound; duration
500ms), then they had to press the central button, perform the
action and then return to the button and press it again to stop the
trial. Participants were required to perform the action as fast and
accurately as possible. For the motor imagery task, participants
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TABLE 1 | Demographic data, clinical features and functional classification in cases group.

UCP Sex Age Lesion

side

GA CP Type Pathophysiology HFC MACS Manipulation

Pattern

fMRI

#1 F 13 LH 32 Right UCP Periventricular-intraventricular hemorrhage (PIVH) 5 3 Synergic Hand Yes

#2 M 14 LH 38 Right UCP Hypoxic-ischemic pre-natal brain injury 5 3 Synergic Hand Yes

#3 M 9 LH 40 Right UCP Factor V deficiency 5 3 Synergic Hand Yes

#4 F 13 LH 36 Right UCP Posterior cerebral artery ischaemic stroke (distal

branches)

4 3 Synergic Hand Yes

#5 M 10 LH 37 Right UCP Middle cerebral artery ischaemic stroke (distal

branches)

5 3 Synergic Hand Yes

#6 M 10 LH 30 Right UCP Hypoxic-ischemic pre-natal brain injury in pre-term

infant

5 3 Synergic Hand Yes

#7 M 14 LH 36 Right UCP Middle cerebral artery ischaemic stroke (deep and

distal branches) and water-shed territories

5 3 Synergic Hand Yes

#8 F 13 RH 39 Left UCP Perinatal ischemic stroke 5 2 Semi-functional

Hand

NA

#9 F 14 RH 32 Left UCP Periventricular-intraventricular (subependymal)

hemorrhage (PIVH)

4 3 Synergic Hand NA

#10 F 13 RH 36 Left UCP Perinatal ischemic stroke 5 2 Semi-functional

Hand

NA

F, Female; GA, Gestational Age; HFC, House Functional Classification level; LH, Left Hemisphere; M, Male; MACS, Manual Ability Classification System; NA, Not Available; RH, Right

Hemisphere; UCP, Unilateral Cerebral Palsy.

were required to press the central button and imagine performing
the action, without doing it, while the hand remained immobile
near the button. Then, they had to press the button again to stop
the trial. Subjects were supposed to feel as if they were actually
moving their hand in a first-person perspective for reaching-
grasping the object. Specifically, they always kept their eyes open
during task performance, to avoid the formation of a visual image
in a third-person perspective. In order to verify the absence
of actual hand movement during the motor imagery task, all
trials were video recorded and given scores by two independent
observers. In both tasks, three different distances were used (100,
150, and 200mm) in order to test the possible differences of
task duration and to verify, in the MI task, that children used
an effective motor strategy. Participants performed 10 trials for
each distance and for each hand, for a total of 30 trials per
task, administered in blocks, each constituted by 10 trials of the
same task, counterbalanced across blocks. Thus, the experiment
consisted of a factorial design: 2 (Task: action execution, motor
imagery)× 3 (Distance: 100, 150, 200mm)× 2 (Hand: preferred
hand, non-preferred hand) × 2 (Group: UCP children, TD
children) with the first three factors as repeated measures within-
subject, and the last one as between-group factor.

Behavioral Data Analysis
For each participant, the mean duration was calculated
separately for each Task, Distance and Hand used. A repeated-
measures analysis of variance (rmANOVA) was conducted
on mean movement durations, with Group as a between-
subjects factor and Task, Distance and used Hand as repeated-
measures. Pairwise comparisons were performed using post-
hoc Bonferroni test to highlight significant findings. When
assumption of sphericity was violated, Greenhouse-Geisser
correction was applied.

The temporal congruence between action execution andmotor
imagery performance was determined by calculating individual
Pearson correlation between the average overt and covert
movement durations (defined as Motor Imagery Ability score—
MIA). Individual correlations were then subjected to rmANOVA
to test Group effects on temporal congruence.

fMRI Study
The two sub-groups of UCP patients and TD children underwent
a session of fMRI in which they were instructed to imagine
reaching-grasping actions similar to those they performed during
the behavioral task. Participants were presented with videoclips
showing a central object (sphere, cube or cylinder) and a box
(6 × 6 cm), placed on right or left with respect to the object
(Figure 1D). Instructions were to observe the presented context,
then a cue (a little arrow) would appear in the central part of the
screen, instructing children to imagine themselves performing
the actionwith the right non-preferred hand (to imagine grasping
the object and placing it into the box located in the position
cued by the arrow). A total of 32 experimental video stimuli
were presented in blocks lasting 16 s each. Eight task blocks were
presented in a single functional run, with 12–16 s of baseline
(fixation of a central white cross) after each block (see Figure 1E).
Imaging sessions lasted∼10 min.

MRI Scanning Procedure
BothUCP and TD children performed a training phase before the
fMRI session aimed at familiarizing them with the experimental
procedure. Visual stimuli were presented by means of a digital
video system (60Hz refresh rate) with a resolution of 800
horizontal pixels x 600 vertical pixels with horizontal eye
field of 30◦ (Resonance Technology, Northridge, CA). Sound-
attenuating headphones were used to muffle scanner noise and
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FIGURE 1 | Behavioral and fMRI paradigms. (A) Experimental setting for the mental chronometry task. (B) Action execution trial, consisting in reaching/grasping the

object, placed at one of the three different distances with the preferred hand or the non-preferred one in different trials, and placing it into a container. (C) Motor

imagery trial, requiring participants to imagine performing the same action as in (B), from a first-person perspective. (D) Stimuli used during the fMRI task, showing an

object and a box on a table. Simultaneously, participants had to imagine themselves grasping the object with the non-preferred hand and placing it into the box. (E)

fMRI block design, alternating task and rest conditions, with a total number of eight blocks, constituted by four trials per block.

give instructions to participants. Digital transmission of signal
to scanner was via optic fiber. Software E-Prime 2 Professional
was used for stimulus presentation. Before the beginning of
MRI acquisition, children received precise instructions not
to make any voluntary movement during the MI task. An
MR-compatible camera (acquisition frequency 60Hz; MRC
Systems) was used to video record actual hand movement
or mirror movements during all experimental sessions. The

absence of movements during motor imagery performance was
investigated by two independent observers at the end of the
scanning session.

MRI Data Acquisition
Anatomical T1-weighted, anatomical T2-weighted FLAIR FS-
ARC, and functional T2∗-weighted MR images were acquired
with a 3-T General Electric scanner (MR750Discovery) equipped
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with an 8-channel receiver head-coil. A three-dimensional (3D)
high-resolution T1-weighted IR-prepared fast SPGR (Bravo)
image covering the entire brain was acquired and used for
anatomical reference. Its acquisition parameters were as follows:
196 slices, 280 × 280 matrix with a spatial resolution of 1 × 1 ×
1mm, TR = 9,700ms, TE = 4ms, FOV = 252 × 252mm; flip
angle= 9◦. Functional volumes were acquired while participants
performed themotor imagery task with the following parameters:
37 axial slices of functional images covering the whole brain
acquired using a gradient-echo echo-planar imaging (EPI) pulse
sequence, slice thickness= 3mmplus interslice gap= 0.5mm, 64
× 64× 37 matrix with a spatial resolution of 3.5× 3.5× 3.5mm,
TR = 2,000ms, TE = 30ms, FOV = 205 × 205 mm2, flip angle
= 90◦, in plane resolution= 3.2 x 3.2 mm2.

Data Preprocessing and Statistical Analysis
Data analysis was performed with SPM12 (Wellcome
Department of Imaging Neuroscience, University College,
London, UK; http://www.fil.ion.ucl.ac.uk/spm) running on
MATLAB 2018a (The Mathworks, Inc.). Structural images
were manually centered and reoriented with functional images
to the anterior-posterior commissure axis. The first four EPI
volumes were discarded to allow for T1 equilibration effects.
For each subject, all volumes were slice timing corrected,
spatially realigned to the first volume and un-warped to correct
for between-scan motion. Motion parameters were used as
regressors of no-interest in the model to account for translation
and rotation along the 3 possible dimensions as determined
during the realignment procedure. Individual datasets were
excluded if excessive head motion was observed (translation >

3mm or rotation > 3◦). T1-weighted images were segmented
into gray, white matter, and cerebrospinal fluid and spatially
normalized to a standard Montreal Neurological Institute (MNI)
template for pediatric data from the 4.5 to 18.5 year age (50). The
spatial transformation derived from this segmentation was then
applied to realigned EPIs for normalization and re-sampled in
2 × 2 × 2 mm3 voxels using trilinear interpolation in space. All
functional volumes were then spatially smoothed with an 8mm
full-width half-maximum isotropic Gaussian kernel.

The pre-processed functional data for each participant were
entered in single-subject whole-brain analysis (51). Blood oxygen
level dependent (BOLD) signal was modeled in a General
Linear Model (GLM) by a design matrix comprising onset and
duration of each event, according to experimental task. This
analysis employed event-related convolution models using the
hemodynamic response function (HRF) provided by the software
SPM12. We used one predictor of interest that was a boxcar
function with duration of motor imagery blocks, containing
four trials each. Single subject activation maps were produced
using a fixed-effect analysis (FFX) at a statistical threshold of
p < 0.001 [with cluster level family-wise error (FWE) rate
correction for multiple comparisons]. Anatomical description
was performed on the basis of probabilistic cytoarchitectonic
maps as implemented in Anatomy toolbox for SPM12 (52).

Two multiple regression analyses were performed at multi-
subject level, one for UCP and one for TD group, separately,
to look for a linear relationship between brain activity (BOLD

signal change) during explicit MI task and MIA score (Pearson
correlation coefficient) obtained in the mental chronometry
paradigm task with the non-preferred hand. These regression
analyses were designed to study responses across the entire brain
at a threshold of p < 0.001, after application of FWE correction
for multiple comparisons at cluster level.

Lesion Analysis
Lesions were manually delineated on the T2-weighted FLAIR
images, using the MRIcron software (http://www.cabi.gatech.
edu/mricro/mricro). Lesions were mapped by two expert
neuroradiologists (FB and GC) delineating the boundary of
the lesion directly on the image for every single transverse
slice, using MRIcron. Both MRI scan and lesion shape were
then mapped into stereotaxic space using the normalization
algorithm provided by SPM12. After normalization, all lesions
were carefully reviewed to ensure that lesion maps accurately
reflected the extent of lesions in MNI space. Manual adjustments
were made if necessary to better match the MNI template.

RESULTS

Behavioral Results
Group mean duration for each distance and for preferred/non-
preferred hands corresponding to the action execution andmotor
imagery tasks, are presented in Figure 2 (individual durations
in both execution and MI tasks for the three distances in
UCP children are presented in Supplementary Table 1). The
rmANOVA revealed significant main effect of Group [F(1, 20) =
38.049, p < 0.0001, partial η

2
= 0.65, Task F(1, 20) = 47.871,

p < 0.0001, partial η
2
= 0.70], Hand [F(1, 20) = 45.395, p <

0.0001, partial η
2
= 0.69], and Distance [F(2, 40) = 16.524, p <

0.0001, partial η2
= 0.45]. Post-hoc comparison showed that UCP

children took more time (M = 3,056ms) to perform the action
execution and motor imagery tasks compared to TD children (M
= 1,750ms, p < 0.001). In addition, mean durations for both
tasks in both groups increased according to Distance, with faster
responses for D1 (M= 2,110ms) compared toD2 (M= 2,393ms,
p< 0.001) and for D2 compared toD3 (M= 2,529ms, p< 0.001).
Moreover, both groups of children performed the execution task
faster with the preferred hand (M = 1,824ms) with respect to the
non-preferred hand (M = 2,307ms, p < 0.001), while there was
no difference between preferred and non-preferred hand during
the MI task (PHM = 2,489; NPHM = 2,754).

The interaction Group × Hand was also significant F(1, 4220)
= 27.7841, p < 0.00004, partial η2

= 0.57. Post-hoc tests revealed
that UCP children took less time to perform both tasks with
the preferred hand (M = 2,698ms) compared to non-preferred
one (M = 3,414ms, p < 0.0001), while no such difference was
present in the TD children, who had similar performance with
both hands.

In addition, the performance of UCP children was slower
compared to that of TD children, not only when using their non-
preferred hand (UCP M = 3,414ms, TD M = 1,795ms, p <

0.001), but also with the preferred one (UCP M = 2,698, TD
M = 1,705ms, p < 0.001). No other interaction between Group
and other factors was significant.
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FIGURE 2 | Line graphs showing mean movement durations (ms) with increased Distances for each group of participants.

Scatter plots of correlations between action execution and
motor imagery durations in each Group are shown in Figure 3A,
for both preferred and non-preferred hand. This measure is
referred to the temporal congruence between tasks and is defined
as MIA score. Mean MIA score (Figure 3B) corresponding to
the use of preferred hand was r = 0.51 for UCP children and
r = 0.61 for TD children. Moreover, mean MIA score using
the non-preferred hand was r = 0.33 for UCP children, and
r = 0.45 for TD children. ANOVA results showed that the
magnitude of MIA score for preferred and non-preferred hand
did not differ between groups F(2, 19) = 2.827, p = 0.084 (see
Supplementary Table 2 for individual MIA scores of both TD
and UCP participants).

Lesion Anatomy
In all patients, the lesion was strictly unilateral (see
Supplementary Figure 1). Most lesioned regions involved
the periventricular and deep white matter, with the typical
periventricular leukomalacia (PVL) and subcortical leukomalacia
as the results of insults occurred during pre and peri-natal period.
The lesions were characterized by white matter loss, gliosis, and
cavitated/cystic lesions adjacent to external angles of lateral
ventricles or diffuse white matter injury and hypomyelination.
Both periventricular and subcortical leukomalacia are on a

continuous disease spectrum: vascular border zones shift toward
periphery as the brain further matures; for this reason, white
matter lesions move from periventricular to subcortical zone.
Considering the different archetypes of childhood hemiplegia,
we can reasonably suppose that the lesions of UCP children
enrolled in this study may belong to the II (Prenatal; lesion of
the 3rd trimester) and III (Connatal; perinatal lesion at term)
group according to the classification of childhood hemiplegia
of Cioni et al. (4). The highest lesion overlap was found in
subcortical white matter of left hemisphere. Conversely, cortical
involvement of regions outside the periventricular zone, i.e.,
the inferior frontal, dorsolateral frontal, inferior and superior
parietal regions was less frequently found (n = 2 subjects).
Overall, lesion distribution was similar to previous lesion
studies in CP (53, 54). Table 2 summarizes the anatomical
characteristics of the lesions of all 7 UCP children. At the
macroscopical examination no patient had bilateral lesions. The
degree of white matter loss, and consequently of ventricular
dilatation, was classified as mild, moderate, and severe based
on the involvement of the periventricular, deep and subcortical
white matter (WM). The degree of corpus callosum atrophy was
classified as mild (<1/3), moderate (<1/3>), severe (>1/3), and
ventricle (VL) dilatation as minimal, mild, moderate or severe.
Only two patients showed signs of Wallerian degeneration of
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FIGURE 3 | (A) Scatterplot showing correlations between movement durations (ms) in the Action Execution and Motor Imagery conditions performed by each group

of participants, using the preferred and the non-preferred hand. The lighter dots represent the trials with the shortest distance, the darker dots those with the longest

distance. (B) Histogram shows the Motor Imagery Ability (MIA) scores, calculated as correlation (Pearson coefficient) index between movement times under Action

Execution and Motor Imagery conditions.

the cortico-spinal tract documented by smooth hyperintensities
in FLAIR images. Limited marginal gliosis was present in
five patients.

Brain Activation Results
Figure 4 illustrates the fMRI results. Similar to previous studies
in adults (15), the imagination of reaching, grasping and placing
an object was associated to activations, in TD children, of the
superior parietal lobule (SPL), the intraparietal sulcus (IPS) and
the precuneus, bilaterally, plus the rostral left inferior parietal
lobule (IPL). In the frontal lobes, TD children’s activations
included bilateral inferior frontal gyrus (IFG pars opercularis),
PMd, middle frontal gyrus (MfG), dorsolateral prefrontal cortex
(DLPFC), superior frontal gyrus/sulcus, and supplementary
motor area (SMA). In the temporal lobe, activations included
posterior superior and middle temporal gyri (pSTG/MTG).
Consistently activated subcortical regions were left putamen,
pallidum, and right thalamus and the lobule VI of the cerebellum,
bilaterally (Figure 4B).

In UCP children, imagining to reach, grasp and place an
object activated, in the contralesional hemisphere, the IPL,
IPS, SPL, and STG/MTG. In the contralesional frontal lobe,
other regions consistently activated were dorsal and ventral

premotor cortices (PMd, PMv), MfG, SMA, and DLPFC. More
than four patients showed consistent activation within the
basal ganglia (putamen and pallidum). In the ipsilesional,
left hemisphere, patients #1, #2, and #6 showed consistent
activations in posterior parietal areas (SPL, IPL), and IPS.
Finally, lobule VI of the cerebellum (bilaterally) was found
consistently activated.

Multiple regression analysis between fMRI BOLD activation
and MIA scores (temporal congruence between grasping action
observation and imagination), obtained by UCP and TD children
using the non-preferred hand, showed a significant effect
in different areas associated to explicit MI (Figures 4C,D).
Statistical details and MNI coordinates for local maxima of the
regression effects in both groups are reported in Table 3.

In the UCP group, the BOLD signal within ipsilesional and
contralesional IPS was positively correlated with MIA scores
obtained in mental chronometry task performed with the non-
preferred hand (right IPS, x = +28, y = −56, z = +51; r = 0.92,
p < 0.001; left IPS, x = −28, y = −60, z = +42; r = 0.93, p
< 0.001). A similar result was present also in the contralesional
PMd (right PMd, x =+34, y =+2, z =+52; r = 0.83, p < 0.01)
and putamen (right putamen, x = +28, y = −12, z = +11; r =
0.61, p < 0.05). In the left ipsilesional hemisphere there were no
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TABLE 2 | Neuroradiological findings and anatomical characteristics of lesions in cases group.

UCP GMD WMD PV- WM D-WM SC- WM VD Localization Gliosis CC atrophy WD of CS TYPE

#1 0 x x x 0 Moderate F-P Mild xx Yes II

#2 0 x x x x Severe F-P No xxx No II

#3 x x x x x Mild F-P Mild x No II

#4 xx x x x x Moderate I-F-P Mild x Yes III

#5 xx x x x x Mild P Mild x No III

#6 0 x x 0 0 Minimal F No Normal No II

#7 0 x x x x Moderate F-P Mild xx No II

Lesion types were defined according to the Cioni’s classification (1999). CC, Corpus Callosum; CC Atrophy: X, Mild (<1/3) damage; XX, Moderate (<1/3>) damage; XXX, (>1/3)

Severe damage; GMD, Gray Matter Damage (0, absent; x, mild; xx, moderate); WMD, White Matter Damage (PV-WM, Periventricular White Matter; D-WM, Deep White Matter; SC-WM,

Subcortical White Matter); localization (F, frontal lobe; I, insular cortex; P, parietal lobe); VD, Ventricle Dilatation; WD, Wallerian degeneration of corticospinal tract. Bold values indicate

the presence of pathological signs for all the analyzed lesions.

FIGURE 4 | fMRI results. Statistical maps illustrating significant activations during the imagination of grasping actions in children with UCP (A) and in TD children (B).

The statistical maps are overlaid into a standard MNI template (ch2Better, MRICron). The results of the regression analysis conducted on UCP group (C) and TD group

(D) indicate correlations between percent signal change in each voxel and the individual Motor Imagery Ability (MIA) score obtained during the fMRI task using the

non-preferred hand. A, Anterior; LH, Left Hemisphere; P, Posterior; RH, Right Hemisphere. Asterisks indicate the lesioned hemisphere in UCP patients.

further significant correlations with the MIA score related to the
non-preferred hand.

Similarly, the regression analysis on TD group’s activations
revealed positive correlation between behavioral score and BOLD
activity in several areas including, in the left hemisphere, the IPS
bilaterally (left: x = −42, y = −42, z = +46; r = 0.87, p < 0.001;
right: x = +30, y = −44, z = +44; r = 0.92, p < 0.001) and the
SPL bilaterally (left: x = −26, y = −62, z = +64; r = 0.74, p <

0.001; right: x=+22, y=−60, z=+62; r = 0.77, p < 0.001).
In the right hemisphere, areas showing a positive correlation

with MIA scores included the PMd cortex (x = +28, y = −2, z
= +50; r = 0.81, p < 0.001), and IFG pars opercularis (x = +54,
y = +12, z = −2; r = 0.65, p < 0.001). Interestingly, a positive

correlation in TD groupwas found in the cerebellum (Lobule VI),
bilaterally (left: x = +32, y = −60, z = −20; r = 0.83, p < 0.001;
right: x=+30, y=−58, z=−20; r = 0.89, p < 0.001).

DISCUSSION

Here, we examined the explicit MI ability in children affected by
spastic UCP and children with typical development. Participants
were explicitly instructed to execute actions, consisting in
grasping an object with their preferred or non-preferred hand
and placing it into a box, or to imagine themselves perform
the same action, from a first-person perspective. Furthermore,
a subgroup of UCP children and a subgroup of TD children
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TABLE 3 | MNI coordinates and statistical details for brain areas showing a

positive correlation with the MIA score obtained by UCP children in the mental

chronometry task.

Anatomical region MNI coordinates

Side x y z Z-score Cluster size

UCP CHILDREN

Intraparietal sulcus LH* −36 −44 +48 3.44 406

RH +32 −54 +52 4.00 377

Precentral gyrus RH +26 −4 +50 3.37 136

Putamen RH +26 −4 +6 4.16 145

Pallidum RH +18 −2 −2 4.14

TD CHILDREN

Superior parietal lobule LH −26 −62 +64 6.05 498

RH +22 −60 +56 5.57 374

Intraparietal sulcus LH −42 −42 +46 5.36 436

RH +30 −44 +44 5.62 348

Precentral gyrus RH +28 −2 +50 4.58 168

Supramarginal gyrus RH +60 −36 +30 4.06 131

IFG (pars opercularis) RH +54 +12 −2 4.34 198

Cerebellum (VI) LH −32 −60 −20 4.20 128

RH +30 −58 −20 4.22 102

Significant threshold set at p< 0.001, FWE corrected at cluster level. Cluster size indicates

voxel number. LH, Left Hemisphere; RH, Right Hemisphere. Asterisk indicates the lesioned

hemisphere in UCP children.

performed an explicit MI task during a session of fMRI, aimed at
investigating functional activation associated to the imagination
of grasping actions. Three main results became evident. First,
UCP children demonstrated significant temporal correlation
between durations of actual and imagined movements. It should
be noted, however, that the durations of both action execution
and imagination were significantly slower in UCP children
compared to TD participants, both when patients performed the
task with the preferred and the non-preferred hand. Secondly,
the performance of UCP children was similar to that of age-
matched TD children in terms of temporal congruence between
duration of execution and imagination trials. However, not all
UCP children presented a good correlation between execution
and imagination. Thirdly, both the subgroups of UCP and TD
children who underwent the fMRI experiment showed a positive
correlation between brain activations during imagination of
grasping movements and behavioral score obtained during the
mental chronometry task using the non-preferred hand. In fact,
higher scores in the behavioral test were positively correlated,
in TD participants, to increased fMRI activations within the
IPS, SPL, and Cerebellum, bilaterally, and the right PMd cortex.
Similarly, in children with UCP, a positive correlation was found
between behavioral score and BOLD activity in IPS bilaterally,
and in contralesional right PMd cortex and putamen. These
results will be discussed in more detail in the next sections.

Explicit Motor Imagery for Grasping
Actions in Children With UCP
In the past decade, several studies using implicit MI tasks
like the HLJ, reported that MI is severely impaired in UCP
children (12, 25, 26, 55, 56). On the other hand, recent works

(31, 32) support the idea that explicit imagery processes increase
body awareness and facilitate patients to use an effective motor
strategy. Previous works in healthy individuals used mental
chronometry tasks to study the development of MI (30, 33, 40)
reporting an age-related increase in ability to engage an effective
motor strategy during action imagination between 5 and 12 years
(i.e., MI duration complies strongly with Fitts’ law assumptions).
In agreement with these studies in TD children, the present study
demonstrates that also UCP children are capable of explicit MI,
suggesting that explicit paradigms of imagination for grasping
actions may reveal a MI capacity in these patients. To the
best of our knowledge, only few previous studies employed an
explicit paradigm to explore MI in children affected by spastic
UCP (32, 57). For example, Spruijt et al. (32) investigated MI
capacity in CP children by means of a mental chronometry
task for walking, demonstrating that task difficulty has similar
effects on movement durations for both actual walking and
imagined walking. Here, we required children to imagine an
action consisting in grasping an object and placing it into
boxes, more complex than other classical tasks, like pointing
movements, walking etc. Similarly to previous studies (34, 38,
58), we also manipulated task difficulty (41) introducing three
different target distances in both real action execution and in
imagination tasks.

Our findings indicate clearly that UCP patients, similarly to
TD children, showed a preserved ability to imagine grasping
actions, both with the preferred and the non-preferred hand,
using a motor strategy, as shown by the compliance of movement
duration with the increase in target distance. Note, however,
that in both hand conditions, the duration of action execution
and motor imagery was higher in UCP than in healthy
participants. A possible interpretation for this result could be
that UCP children generally show a deficit in the forward
modeling of movements (12); this could make MI particularly
difficult when instructions require an implicit simulation of
the action. However, in our study, UCP children are likely
facilitated by the explicit instruction to use MI of a goal directed
sequence, which requires them to perform imagination in a first-
person perspective, allowing them to evoke the same kinesthetic
experience that characterize the real action execution. Thus,
explicit MI instructions could favor UCP children performance,
although this latter does not reach the level of TD children.

A further, not alternative, explanation for the longer duration
of execution and MI, both for the non-preferred and the
preferred hand, could be referred to a higher order deficit related
to general action planning. Since the task required a three-step
sequence, it is possible that the memory retrieval of the sequence
and/or transition between its various steps require more time
with respect to healthy controls. This explanation may indicate
a possible bilateral deficit in action organization in UCP children
(26, 59).

Brain Activations During Explicit Motor
Imagery in UCP and TD Children
According to behavioral findings obtained by the mental
chronometry task, we found that some UCP children showed
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preserved brain activations in cortical and subcortical areas
already described in previous studies on healthy individuals
during performance of kinesthetic MI tasks (15). Activation
of these areas was very similar to that of TD children
performing the same MI task. It could be due to the employed
modality of MI requiring the imagination of that movement
in a first-person perspective, perceiving the motor action (e.g.,
retrieving sensations typically associated with object texture,
proprioception etc.), that is different from other imagination
strategies, such as visual imagery, consisting in mentally
visualizing a movement in third-person perspective. Among the
main activated regions in UCP children and healthy controls,
premotor and parietal areas have been reported in previous
studies, in which the task required healthy participants to execute
(60–63), to observe (64–67), or to imagine (68–71) reaching-
grasping actions.

The results of our study suggest that UCP children were able to
activate, in the right contralesional hemisphere, a similar parieto-
frontal network during imagination of reaching-grasping actions
performedwith the non-preferred hand. Interestingly, someUCP
children (N = 4) showed enhanced brain activations not only in
the contralesional hemisphere, but also in the ipsilesional one,
including, in the parietal cortex, the IPS/SPL and SMG/IPL and,
in the frontal cortex, the PMd. Noteworthy, these are the patients
in which the damage was mainly subcortical. Moreover, two of
these patients (#2, #6) showed activations also in the ipsilesional
prefrontal region (DLPFC).

These findings are partly in contrast with other studies on
MI in UCP children (25, 26, 72), which suggest a general
deficit in MI and motor planning for hemiparetic CP children
with motor deficits on the right side compared with the left
one. For instance, Chinier et al. (72) showed that only UCP
patients with early lesions of the right hemisphere were able
to perform MI. A plausible explanation for this discrepancy
could be the specificity of MI modality, explicitly requiring
participants to imagine themselves performing the action in a
first-person perspective.

One can argue that residual MI ability in UCP children of
our study could be attributed to differences in lesion extension.
By using lesion overlap, we found that UCP children enrolled
in this study presented unilateral brain lesions involving the
periventricular zone, with the greatest overlap in subcortical
white matter of left hemisphere. Conversely, cortical involvement
of regions outside the periventricular zone, i.e., inferior frontal,
dorsolateral frontal, inferior and superior parietal regions, was
much less frequently found (N = 2 patients). However, we did
not find a direct correspondence between lesion type/extension
and brain activation.

Another interesting result was that in both UCP and TD
children the MIA scores obtained in the mental chronometry
task using the non-preferred hand were correlated with BOLD
activation during the covert execution of reaching-grasping
actions with the same hand. In this respect, the activation of
bilateral IPS and SPL in TD children during the imagination
of grasping actions is in line with previous results on adults
suggesting an important role of the parietal cortex during
explicit MI (15, 69). Furthermore, deficits in MI tasks have

been observed in patients with lesions of the parietal region
(38).The correlation of behavioral score with IPS activation
in UCP during MI performed with the paretic hand would
support the idea that also in patients the imagination of
reaching-grasping motor acts automatically retrieves the internal
motor representation (13). Another possible interpretation
could be that, since the task required children to imagine
performing a complex action with their non-preferred hand, IPS
activation may also be due to the online control necessary for
correct execution.

The correlation of behavioral scores with activation of dorsal
sector of premotor cortex (PMd), both in TD and UCP children,
could be related to its role in online control of action execution.
For example, a study in healthy participants, performing a
reaching-grasping-lifting task, showed that TMS virtual lesions
of PMd delayed recruitment of proximal muscles involved in
the lifting phase, leading to a longer preloading phase and
a less synchronized grasping/lifting movement (73), therefore
suggesting an important role of PMd in synchronization of
proximal and distal movements. The hand type of UCP children
enrolled in this study requires, for grasping accomplishment,
a synergy of shoulder, elbow and hand movements, exclusively
under visual control. The same type of synergy could occur
during imagination using the non-preferred hand. Consistent
with this idea, activation of PMd cortex was stronger in
those UCP children who obtained higher scores in the mental
chronometry task.

Finally, the present data support also the view that subcortical
regions, such as putamen and cerebellum, are involved in
explicit MI for complex grasping actions. All cortical areas
activated during imagination (IPL, IPS, PMd) are known to
have strong anatomical connections with basal ganglia, creating
a cortico-basal ganglia-thalamo-cortical loop that plays a key
role in motor planning and motor learning (74). Furthermore,
neuroimaging studies show activation of basal ganglia in healthy
participants during MI (15). Coherent with this, patients
with Parkinson’s disease, which affects primarily the basal
ganglia, show a deficit in mental representations of hand
movements (75, 76). Based on this assumption, it is possible
to hypothesize that in UCP children the normal motor loop
connecting cortical motor system with basal ganglia via thalamus
is involved in the performance of both overt and covert
movement execution.

CONCLUSIONS

This study substantiates the view that explicit MI ability
for grasping actions could be preserved in UCP children,
as demonstrated by temporal correlation between durations
of actual and imagined movements. Brain activations related
to explicit MI support this view. In summary, specific tools
for MI assessment are necessary in order to evaluate the
spared ability, which allows UCP children to retrieve motor
representations, according to their residual motor repertoire. In
addition, our data suggest that employing explicit MI strategies
as a training tool could support, in CP rehabilitation, recovery
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of manipulation function and development of upper limb
skilled movements. This suggestion is also prompted by the
well-known evidence that MI can be used for rehabilitation
of motor deficits, for example in developmental coordination
disorder, in stroke patients and in Parkinson’s disease (19–23).
In addition, there is evidence that the use of MI in combination
with Action Observation can represent an effective tool to
enhance motor learning and improve upper limb function in
patients with motor deficits (77–80). The employment of MI
together with electrophysiological methods and behavioral scales
who provide a better characterization of the patient, could
allow to choose the type of MI (explicit vs. implicit) and of
MI task (simple vs. complex actions) more appropriate for
personalized interventions.
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