874 research outputs found

    General purpose computer program for interacting supersonic configurations: Programmer's manual

    Get PDF
    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing

    General purpose computer program for interacting supersonic configurations. User's manual

    Get PDF
    The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline

    Wetlands: A potentially significant source of atmospheric methyl bromide and methyl chloride

    Get PDF
    Tropospheric methyl bromide (CH3Br) and methyl chloride (CH3Cl) are significant sources of ozone (O3) destroying halogens to the stratosphere. Their O3 depletion potential (ODP) can be determined from atmospheric lifetimes and therefore their atmospheric budgets, both of which are out of balance with known sink terms larger than identified sources. We have discovered a new source of CH3Br and CH3Cl emissions to the atmosphere at two wetland sites in the Northeastern United States. We have reason to believe that these compounds are biologically produced in situ. Our measurements indicate that the global annual flux of CH3Br and CH3Cl from wetlands could be as high as 4.6 Gg yr−1 Of CH3Br and 48 Gg yr−1 of CH3Cl. These are preliminary estimates based on measurements made during the end of the 1998 growing season, a time period of decreased emissions of other trace gases such as methane (CH4)

    Planck pre-launch status: High Frequency Instrument polarization calibration

    Get PDF
    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (ΔP/T_(cmb) ~ 4 × 10^(-6) for P either Q or U and T_(cmb) ≃ 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l ~ 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1° respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements

    An estimate of the uptake of atmospheric methyl bromide by agricultural soils

    Get PDF
    Published estimates of removal of atmospheric methyl bromide (CH3Br) by agricultural soils are 2.7 Gg yr−1 (Gg = 109 g) [Shorter et al., 1995] and 65.8 Gg yr−1 [Serça et al., 1998]. The Serça et al. estimate, if correct, would suggest that the current value for total removal of atmospheric CH3Br by all sinks of 206 Gg yr−1 (based on Shorter et al., 1995) would be 30% too low. We have calculated a new rate of global agricultural soil uptake of atmospheric CH3Br from a larger sampling of cultivated soils collected from 40 sites located in the United States, Costa Rica, and Germany. First order reaction rates were measured during static laboratory incubations. These data were combined with uptake measurements we reported earlier based on field and laboratory experiments [Shorter et al. 1995]. Tropical (10.2°–10.4°N) and northern (45°–61°N) soils averaged lower reaction rate constants than temperate soils probably due to differing physical and chemical characteristics as well as microbial populations. Our revised global estimate for the uptake of ambient CH3Br by cultivated soils is 7.47±0.63 Gg yr−1, almost three times the value that we reported in 1995

    Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest

    Get PDF
    Soil carbon dioxide efflux (soil respiration, SR) was measured with eight autochambers at two locations along a wetland to upland slope at Harvard Forest over a 4 year period, 2003–2007. SR was consistently higher in the upland plots than at the wetland margin during the late summer/early fall. Seasonal and diel hystereses with respect to soil temperatures were of sufficient magnitude to prevent quantification of the influence of soil moisture, although apparent short‐term responses of SR to precipitation occurred. Calculations of annual cumulative SR illustrated a decreasing trend in SR over the 5 year period, which were correlated with decreasing springtime mean soil temperatures. Spring soil temperatures decreased despite rising air temperatures over the same period, possibly as an effect of earlier leaf expansion and shading. The synchronous decrease in spring soil temperatures and SR during regional warming of air temperatures may represent a negative feedback on a warming climate by reducing CO2 production from soils. SR reached a maximum later in the year than total ecosystem respiration (ER) measured at a nearby eddy covariance flux tower, and the seasonality of their temperature response patterns were roughly opposite. SR, particularly in the upland, exceeded ER in the late summer/early fall in each year, suggesting that areas of lower efflux such as the wetland may be significant in the flux tower footprint or that long‐term bias in either estimate may create a mismatch. Annual estimates of ER decreased over the same period and were highly correlated with SR

    Fine root dynamics and trace gas fluxes in two lowland tropical forest soils

    Get PDF
    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 ( 35) and 153 ( 27) gm 2 yr 1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k5 0.96 year 1) than in the sandy loam soil (k5 0.61 year 1),leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13 1ngNcm 2 h 1) than in the sandy loam (1.4 0.2 ngNcm 2 h 1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 gCm 2 yr 1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521 206 gCm2 yr 1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions

    Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil

    No full text
    International audienceWe studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Parå, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N2O we measured 27 soil chemical, soil microbiological and soil physical variables. Soil N2O fluxes were higher in the wet season than in the dry season. Fluxes of N2O from forest soils always exceeded fluxes from pasture soils and showed no consistent trend with pasture age. At our forest sites, nitrate was the dominant form of inorganic N both during wet and dry season. At our pasture sites nitrate generally dominated the inorganic N pools during the wet season and ammonium dominated during the dry season. Net mineralization and nitrification rates displayed large variations. During the dry season net immobilization of N was observed in some pastures. Compared to forest sites, young pasture sites (?2 years) had low microbial biomass N and protease activities. Protease activity and microbial biomass N peaked in pastures of intermediate age (4 to 8 years) followed by consistently lower values in older pasture (10 to 60 years). The C/N ratio of litter was low at the forest sites (~25) and rapidly increased with pasture age reaching values of 60-70 at pastures of 15 years and older. Nitrous oxide emissions at our sites were controlled by C and N availability and soil aeration. Fluxes of N2O were negatively correlated to leaf litter C/N ratio, NH4+-N and the ratio of NO3--N to the sum of NO3--N + NH4+-N (indicators of N availability), and methane fluxes and bulk density (indicators of soil aeration status) during the wet season. During the dry season fluxes of N2O were positively correlated to microbial biomass N, ?-glucosidase activity, total inorganic N stocks and NH4+-N. In our study region, pastures of all age emitted less N2O than old-growth forests, because of a progressive decline in N availability with pasture age combined with strongly anaerobic conditions in some pastures during the wet season

    Methane Flux from Drained Northern Peatlands: Effect of a Persistent Water Table Lowering on Flux

    Get PDF
    Measurements of CH4 flux from drained and undrained sites in three northern Ontario peatlands (a treed fen, a forested bog, and a treed bog) were made from the beginning of May to the end of October 1991. In the drained portions, the water table had been lowered between 0.1 and 0.5 m, compared to the water table of the undrained portion of the peatlands. The mean seasonal CH4 flux from the undrained portions of three peatlands was small, ranging from 0 to 8 mg m-2d-1, but similar to the CH4 flux from other treed and forested northern peatlands. The mean seasonal CH4 flux from the drained portion of the peatlands was either near zero or slightly negative (i.e., uptake): fluxes ranged from 0.1 to -0.4 mg m-2d-1. Profiles of CH4 in the air-filled pores in the unsaturated zone, and the water-filled pores of the saturated zone of the peat at the undrained sites, showed that all the CH4 produced at depth was consumed within 0.2 m of the water table and that atmospheric CH4 was consumed in the upper 0.15 m of the peatland. On the basis of laboratory incubations of peat slurries to determine CH4 production and consumption potentials, the lowering of the water table eliminated the near-surface zone of CH4 production that existed in the undrained peatland. However, drainage did not alter significantly the potential for CH4 oxidation between the water table and peatland surface but increased the thickness of the layer over which CH4 oxidation could take place. These changes occurred with a drop in the mean summer water table of only 0.1 m (from -0.2 to -0.3 m) suggesting that only a small negative change in soil moisture would be required to significantly reduce CH4 flux from northern peatlands

    Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer

    Get PDF
    We have developed a mid‐infrared continuous‐wave quantum cascade laser direct‐absorption spectrometer (QCLS) capable of high frequency (≄1 Hz) measurements of 12CH4 and 13CH4 isotopologues of methane (CH4) with in situ 1‐s RMS image precision of 1.5 ‰ and Allan‐minimum precision of 0.2 ‰. We deployed this QCLS in a well‐studied New Hampshire fen to compare measurements of CH4 isoflux by eddy covariance (EC) to Keeling regressions of data from automated flux chamber sampling. Mean CH4 fluxes of 6.5 ± 0.7 mg CH4 m−2 hr−1 over two days of EC sampling in July, 2009 were indistinguishable from mean autochamber CH4 fluxes (6.6 ± 0.8 mgCH4 m−2 hr−1) over the same period. Mean image composition of emitted CH4 calculated using EC isoflux methods was −71 ± 8 ‰ (95% C.I.) while Keeling regressions of 332 chamber closing events over 8 days yielded a corresponding value of −64.5 ± 0.8 ‰. Ebullitive fluxes, representing ∌10% of total CH4 fluxes at this site, were on average 1.2 ‰ enriched in 13C compared to diffusive fluxes. CH4 isoflux time series have the potential to improve process‐based understanding of methanogenesis, fully characterize source isotopic distributions, and serve as additional constraints for both regional and global CH4 modeling analysis
    • 

    corecore