46 research outputs found

    Current and State of Charge Estimation of Lithium-Ion Battery Packs Using Distributed Fractional Extended Kalman Filters

    Get PDF
    In this paper, a method for current and state of charge estimation of lithium-ion battery packs is proposed. On the basis of a fractional 1-RQ equivalent circuit cell model, a string model containing cells in serial connection, and a pack model containing strings in parallel connection is built up. In order to reduce computational costs, the model is distributed string-wise into subsystems. An algorithm using distributed fractional extended Kalman filters is applied to estimate the state of charge of all cells of each string, locally. To avoid costly measurements of numerous currents, a model based calculation is proposed which describes how the total battery current is split up between the strings. The algorithm is tested and validated using measurement data

    Phase Structure of Z(3)-Polyakov-Loop Models

    Get PDF
    We study effective lattice actions describing the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. Starting with a strong-coupling expansion the effective action is obtained as a series of Z(3)-invariant operators involving higher and higher powers of the Polyakov loop, each with its own coupling. Truncating to a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches concerning the phase structure of the theories. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and anti-ferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents nu and gamma at the continuous transition between symmetric and anti-ferromagnetic phases are the same as for the 3-state Potts model.Comment: 20 pages, 22 figure

    Staggered fermions, zero modes, and flavor-singlet mesons

    Full text link
    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m1/m, where mm is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.Comment: 24 pages, 21 figures, v2 clarifies a dependence and matches published versio

    Supersymmetry Breaking in Low Dimensional Models

    Full text link
    We analyse supersymmetric models that show supersymmetry breaking in one and two dimensions using lattice methods. Starting from supersymmetric quantum mechanics we explain the fundamental principles and problems that arise in putting supersymmetric models onto the lattice. We compare our lattice results (built upon the non-local SLAC derivative) with numerically exact results obtained within the Hamiltonian approach. A particular emphasis is put on the discussion of boundary conditions. We investigate the ground state structure, mass spectrum, effective potential and Ward identities and conclude that lattice methods are suitable to derive the physical properties of supersymmetric quantum mechanics, even with broken supersymmetry. Based on this result we analyse the two dimensional N=1 Wess-Zumino model with spontaneous supersymmetry breaking. First we show that (in agreement with earlier analytical and numerical studies) the SLAC derivative is a sensible choice in the quenched model, which is nothing but the two dimensional phi^4 model. Then, we present the very first computation of a renormalised critical coupling for the complete supersymmetric model. This calculation makes use of Binder cumulants and is supported by a direct comparison to Ward identity results, both in the continuum and infinite volume limit. The physical picture is completed by masses at two selected couplings, one in the supersymmetric phase and one in the supersymmetry broken phase. Signatures of the Goldstino in the fermionic correlator are clearly visible in the broken case.Comment: 33 pages, 28 figure

    Fermi-Einstein condensation in dense QCD-like theories

    Full text link
    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.Comment: 51 pages, 32 figure

    The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

    Get PDF
    Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    Infektionsquellensuche bei ambulant erworbenen Fällen von Legionärskrankheit

    Get PDF
    Bei den meisten Fällen von ambulant erworbener Legionärskrankheit (AE-LK) gelingt es auch in inter¬nationalen Studien nicht, die verantwortliche Infek¬tionsquelle nachzuweisen. Ein Ziel der Berliner LeTriWa-Studie („Legionellen in der Trinkwasser-Installation“) war es, herauszufinden, bei wie vielen Fällen evidenzbasiert eine Infektionsquelle identifi¬ziert werden kann. Dazu wurden im Zeitraum 2016 bis 2020 Fälle von AE-LK und Kontrollpersonen rekrutiert, Urin- und tiefe Atemwegsproben untersucht und Befragungen zu potenziellen Expositionen durchgeführt. Zudem wurden verschiedene häusliche und außerhäusliche Infektionsquellen beprobt. Die Zuordnung der potenziellen Infektionsquelle erfolgte mittels einer eigens entwickelten Evidenz-Matrix. Im vorliegenden Teil 1 des Berichts werden zunächst die Hintergründe, Ziele und Methoden der LeTriWa-Studie vorgestellt.Peer Reviewe
    corecore